Algorithms represented as Decision Trees

Internal nodes represent comparison of two elements

\[\text{a : b} \]

\[\text{c : b} \]

\[\text{c : d} \]
Algorithms represented as Decision Trees

Internal nodes represent comparison of two elements i,j.

Branches represent outcome of comparison:
- Left: $i < j$
- Right: $i > j$
Algorithms represented as Decision Trees

Internal nodes represent comparison of two elements \(i, j \)

Branches represent outcome of comparison

Left: \(i < j \)
Right: \(i > j \)

Example: sort \(a_1, a_2, a_3 \)
Algorithms represented as Decision Trees

Internal nodes represent comparison of two elements i,j
Branches represent outcome of comparison
- Left: $i < j$
- Right: $i > j$

Example: sort a_1, a_2, a_3

Each leaf is a possible output
Algorithms represented as Decision Trees

Internal nodes represent comparison of two elements i,j
Branches represent outcome of comparison
- Left: i < j
- Right: i > j

Each leaf is a possible output

Example: sort a_1, a_2, a_3
Algorithms represented as Decision Trees

Internal nodes represent comparison of two elements i,j
Brances represent outcome of comparison
\(6 \text{ Left: } i < j \)
\(6 \text{ Right: } i > j \)

Example: sort a_1, a_2, a_3

Verify on 9, 4, 6

$\text{a}_3 < \text{a}_2 < \text{a}_1$

Each leaf is a possible output
Algorithms represented as Decision Trees

Internal nodes represent comparison of two elements \(i,j \)
Branches represent outcome of comparison
\(\leq \) Left: \(i < j \)
\(> \) Right: \(i > j \)

Example: sort \(a_1, a_2, a_3 \)

Each leaf is a possible output
Each root-\(\rightarrow \)leaf path represents an execution of algo.

Verify on 9, 4, 6
\(a_1, a_2, a_3 \)
Algorithms represented as Decision Trees

Internal nodes represent comparison of two elements \(i,j \)
Brances represent outcome of comparison
\(\leq \text{Left: } i < j, \text{Right: } i > j \)

Example: sort \(a_1, a_2, a_3 \)

Each leaf is a possible output
Each root->leaf path represents an execution of algo.

Verify on 9, 4, 6
\(a_1, a_2, a_3 \)

Any decision-based algorithm can be encoded as a decision tree.
If you are designing a decision tree, it's up to you to avoid comparing the same elements many times.
If you are designing a decision tree, it's up to you to avoid comparing the same elements many times. The worst-case run-time is precisely the longest root-leaf path.
If you are designing a decision tree, it's up to you to avoid comparing the same elements many times. The worst-case run-time is precisely the longest root-leaf path. You shouldn't compare $a_i:a_j$ twice on one path. So max path length = (n) for sorting for a good algo
If you are designing a decision tree, it's up to you to avoid comparing the same elements many times. The worst-case run-time is precisely the longest root-leaf path. You shouldn't compare $a_i : a_j$ twice on one path. Therefore, the max path length is n. Why not write all algorithms this way? (so much prettier than pseudocode)
If you are designing a decision tree, it's up to you to avoid comparing the same elements many times.

The worst-case run-time is precisely the longest root-leaf path. You shouldn't compare $a_i : a_j$ twice on one path.

\[\Rightarrow \text{so max path length} = (n) \]

Why not write all algorithms this way? (so much prettier than pseudocode)

\[\Rightarrow \text{It's huge and repetitive.} \]

It really lists every possible execution of algo.
If you are designing a decision tree, it's up to you to avoid comparing the same elements many times. The worst-case run-time is precisely the longest root-leaf path. You shouldn't compare \(a_i : a_j \) twice on one path.

\[\implies \text{so max path length} = (n) \]

Why not write all algorithms this way? (so much prettier than pseudocode)

\[\implies \text{It's huge and repetitive.} \]

It really lists every possible execution of algo.

\[\implies \text{You actually might need a different tree for each n.} \]
If you are designing a decision tree it's up to you to avoid comparing the same elements many times.

The worst-case run-time is precisely the longest root-leaf path.

\[\text{so max path length} = \binom{n}{2} \]

Why not write all algorithms this way? (so much prettier than pseudocode)

\[\text{It's huge and repetitive.} \]
\[\text{It really lists every possible execution of algo.} \]
\[\text{You actually might need a different tree for each n.} \]

What is the shortest possible tree for comparison-sort?
A correct decision tree for sorting must have every possible output represented at a leaf node.

#leaves > ?
A correct decision tree for sorting must have every permutation of the input represented at a leaf node.

#leaves?
A correct decision tree for sorting must have every permutation of the input represented at a leaf node.

\[\#\text{leaves} \geq n! \]
A correct decision tree for sorting must have every permutation of the input represented at a leaf node.

\[\text{#leaves} \geq n! \]

height of tree = worst case time = h \[\Rightarrow \text{#leaves} \leq ? \]
A correct decision tree for sorting must have every permutation of the input represented at a leaf node.

\[\#\text{leaves} \geq n! \]

height of tree = worst case time = \(h \) \(\Rightarrow \) \(\#\text{leaves} \leq 2^h \)

[binary tree; every node has 2 children]
A correct decision tree for sorting must have every permutation of the input represented at a leaf node.

\[\#\text{leaves} \geq n! \]

Height of tree = worst case time = \(h \) \(\Rightarrow \) \#leaves \(\leq 2^h \)

[binary tree; every node has 2 children]

so, \(n! \leq \#\text{leaves} \leq 2^h \)
A correct decision tree for sorting must have every permutation of the input represented at a leaf node.

\[\#\text{leaves} \geq n! \]

height of tree = worst case time = \(h \) \(\Rightarrow \#\text{leaves} \leq 2^h \) [binary tree; every node has 2 children]

so, \(n! \leq \#\text{leaves} \leq 2^h \) \(\Rightarrow \log n! \leq \log 2^h \)
A correct decision tree for sorting must have every permutation of the input represented at a leaf node.

\[\text{\#leaves} \geq n! \]

\[\text{height of tree} = \text{worst case time} = h \implies \text{\#leaves} \leq 2^h \]

[binary tree; every node has 2 children]

so, \[n! \leq \text{\#leaves} \leq 2^h \] \[\implies \log n! \leq \log 2^h \] \[\implies h \geq \log n! \]
A correct decision tree for sorting must have every permutation of the input represented at a leaf node.

\[\text{\#leaves} \geq n! \]

Height of tree = worst case time = \(h \) \(\rightarrow \) \(\#\text{leaves} \leq 2^h \)

[Binary tree; every node has 2 children]

So, \(n! \leq \#\text{leaves} \leq 2^h \) \(\Rightarrow \) \(\log n! \leq \log 2^h \) \(\Rightarrow \) \(h \geq \log n! \)

Stirling's formula: \(n! \geq (\frac{n}{e})^n \) \(h \geq \log (\frac{n}{e})^n \)
A correct decision tree for sorting must have every permutation of the input represented at a leaf node.

\[\#\text{leaves} \geq n! \]

height of tree = worst case time = \(h \) \(\Rightarrow \#\text{leaves} \leq 2^h \)
[binary tree; every node has 2 children]

so, \(n! \leq \#\text{leaves} \leq 2^h \) \(\Rightarrow \ \log n! \leq \log 2^h \) \(\Rightarrow h \geq \log n! \)

Stirling's formula: \(n! \approx (\frac{n}{e})^n \sqrt{2\pi n} \)

\[h \geq \log(\frac{n}{e})^n = n \cdot \log \frac{n}{e} \]
A correct decision tree for sorting must have every permutation of the input represented at a leaf node.

\[\#\text{leaves} \geq n! \]

Height of tree = worst case time = \(h \) \(\Rightarrow \) \(\#\text{leaves} \leq 2^h \)

[Binary tree; every node has 2 children]

So, \(n! \leq \#\text{leaves} \leq 2^h \) \(\Rightarrow \) \(\log n! \leq \log 2^h \) \(\Rightarrow \) \(h \geq \log n! \)

Stirling's formula: \(n! \geq (\frac{n}{e})^n \)

\[h \geq \log \left(\frac{n^n}{e^n} \right) = n \log \frac{n}{e} = n \log n - n \log e = n \log n - \Theta(n) \]

\(h = \Omega(n \log n) \)

Extra analysis of \(\log n! \) follows
\log(n!) = O(\mathbb{?})
\log(n!) = O(?)

\log(n!) \leq \log(n^n)
\log(n!) = O(?)

\log(n!) \leq \log(n^n) = n \log n
\[
\log(n!) = O(n \log n)
\]
\[
\log(n!) \leq \log(n^n) = n \log n
\]
\[
\log(n!) = \Omega(?)
\]
\[\log(n!) = O(n \log n) \]

\[\log(n!) \leq \log(n^n) = n \log n \]

\[\log(n!) = \Omega(?) \]

\[\log(n!) = \log(n \cdot (n-1) \cdot (n-2) \cdot (n-3) \cdots 3 \cdot 2 \cdot 1) \]
\[
\log(n!) = O(n \log n)
\]
\[
\log(n!) \leq \log(n^n) = n \log n
\]

\[
\log(n!) = \Omega(?)
\]

\[
\log(n!) = \log(n \cdot (n-1) \cdot (n-2) \cdot (n-3) \ldots \ldots 3 \cdot 2 \cdot 1)
\]

\[
= \log(n \cdot 1 \cdot (n-1) \cdot 2 \cdot (n-2) \cdot 3 \cdot (n-3) \cdot 4 \ldots \ldots \cdot n \cdot \frac{n}{2} \cdot \frac{n}{2})
\]

\[
\Rightarrow \text{exactly if } n: \text{even}
\]
\[\log(n!) = \Theta(n \log n) \]

\[\log(n!) \leq \log(n^n) = n \log n \]

\[\log(n!) = \Omega(?) \]

\[\log(n!) = \log(n \cdot (n-1) \cdot (n-2) \cdot (n-3) \cdot \ldots \cdot 3 \cdot 2 \cdot 1) \]

\[= \log \left(n \cdot 1 \cdot (n-1) \cdot 2 \cdot (n-2) \cdot 3 \cdot (n-3) \cdot 4 \cdot \ldots \cdot n \cdot \left(n - \frac{n}{2} \right) \cdot \left(n - \frac{n}{2} \right) \right) \]

\[\geq \log \left(n \cdot n \cdot n \cdot n \cdot \ldots \cdot n \right) \]
\log(n!) = O(n \log n)
\log(n!) \leq \log(n^n) = n \log n

\log(n!) = \Omega(\log n)

\log(n!) = \log(n \cdot (n-1) \cdot (n-2) \cdot (n-3) \cdots \cdots 3 \cdot 2 \cdot 1)
= \log(n \cdot 1 \cdot (n-1) \cdot 2 \cdot (n-2) \cdot 3 \cdot (n-3) \cdot 4 \cdots \cdots n \cdot \frac{n}{2} \cdot \frac{n}{2})
\geq \log(n \cdot n \cdot n \cdot n \cdot n \cdot n \cdots n)
= \log(n^{n/2}) \quad \text{(assume } n \text{ even)}
\quad \text{otherwise } \frac{n}{2^k}
\[\log(n!) = O(n \log n) \]

\[\log(n!) \leq \log(n^n) = n \log n \]

\[\log(n!) = \Omega(n \log n) \]

\[\log(n!) = \log(n \cdot (n-1) \cdot (n-2) \cdot (n-3) \cdots \cdots 3 \cdot 2 \cdot 1) \]

\[= \log(n \cdot 1 \cdot (n-1) \cdot 2 \cdot (n-2) \cdot 3 \cdot (n-3) \cdot 4 \cdots \cdots \cdot n \cdot \frac{n}{2} \cdot \frac{n}{2}) \]

\[\geq \log(n \cdot n \cdot n \cdot n \cdot \cdots \cdots \cdot n) \]

\[= \log\left(n^{\frac{n}{2}}\right) \quad \text{(assume } n: \text{even)} \quad \Rightarrow \quad \log(n!) \geq \frac{n}{2} \log n \]

\[\text{otherwise } \frac{n}{2} \]
\[\log(n!) = O(n \log n) \]
\[\log(n!) \leq \log(n^n) = n \log n \]
\[\log(n!) = \Omega(n \log n) \]

\[\log(n!) = \log(n \cdot (n-1) \cdot (n-2) \cdot (n-3) \cdots 3 \cdot 2 \cdot 1) \]
\[= \log(n \cdot 1 \cdot (n-1) \cdot 2 \cdot (n-2) \cdot 3 \cdot (n-3) \cdot 4 \cdots n \cdot \frac{n}{2} \cdot \frac{n}{2}) \]
\[\geq \log(n \cdot n \cdot n \cdot n \cdot n \cdot n \cdot \cdots n) \]
\[= \log(n^{n/2}) \quad \text{(assume } n \text{: even)} \Rightarrow \log(n!) \geq \frac{n}{2} \log n \]

so \[\frac{1}{2} n \log n \leq \log(n!) \leq n \log n \]