SORTING

Input: a list of numbers $8, \sqrt{2}, 5, 21, \frac{1}{3}$

Output: a permutation that is in increasing order $\frac{1}{3}, \sqrt{2}, 5, 8, 21$
SORTING

Input: a list of numbers $8, \sqrt{2}, 5, 21, \frac{1}{3}$

Output: a permutation that is in increasing order $\frac{1}{3}, \sqrt{2}, 5, 8, 21$

An algorithm should do the following:

- produce correct output for all possible input
SORTING

Input: a list of numbers \(8, \sqrt{2}, 5, 21, \frac{1}{3}\)

Output: a permutation that is in increasing order \(\frac{1}{3}, \sqrt{2}, 5, 8, 21\)

An algorithm should do the following:

1) produce correct output for all possible input

2) terminate quickly

3) not use a lot of space
SORTING

Input: a list of numbers $8, \sqrt{2}, 5, 21, \frac{1}{3}$

Output: a permutation that is in increasing order $\frac{1}{3}, \sqrt{2}, 5, 8, 21$

An algorithm should do the following:
1) produce correct output for all possible input
2) terminate quickly
3) not use a lot of space
4) be described clearly
etc
Issues that affect algorithmic design:

- **Input type:** e.g., are numbers distinct? integer/real/irrational/etc?

 Do they have bounded size?
Issues that affect algorithmic design:

- **input type**: e.g., are numbers distinct? integer/real/irrational/etc? Do they have bounded size?
- **allowed operations**: compare, add, truncate, etc
Issues that affect algorithmic design:

• input type: e.g., are numbers distinct? integer/real/irrational/etc? Do they have bounded size?

• allowed operations: compare, add, truncate, etc

• data structure: array? linked list? tree? etc
Issues that affect algorithmic design:

- input type: e.g., are numbers distinct? integer/real/irrational/etc?
 Do they have bounded size?
- allowed operations: compare, add, truncate, etc
- data structure: array? linked list? tree? etc
- model of computation: time/space complexity of operations
Issues that affect algorithmic design:

- **Input type**: e.g., are numbers distinct? integer/real/irrational/etc? Do they have bounded size?
- **Allowed operations**: compare, add, truncate, etc
- **Data structure**: array? linked list? tree? etc
- **Model of computation**: time/space complexity of operations

We focus on:

- Comparison-based algorithms
- Constant time for basic ops (more later)
Insertion sort

• Start with a sorted prefix of size 1.

• Extend size of sorted prefix by 1

• Repeat
Insertion sort

- Start with a sorted prefix of size 1.
- Extend size of sorted prefix by 1
- Repeat

In general:

Before

\[
\]

\underbrace{\text{sorted}}

After

\[
\]

\underbrace{\text{sorted}}
Insertion sort

- Start with a sorted prefix of size 1.
- Extend size of sorted prefix by 1
- Repeat

In general:

Before

sorted

After

sorted

Use the element next to the prefix to extend the prefix...
| S_1 | S_2 | S_3 | S_4 | S_5 | S_6 | X | ? | ? | ? | ? |

sorted prefix
if $S_6 \leq X \rightarrow$ trivial extension
sorted prefix

\[
\begin{array}{c|c|c|c|c|c|c}
\end{array}
\]

if \(S_6 \leq X \) \quad \rightarrow \quad \text{trivial extension}

else \(S_6 > X \)
if $S_6 \leq X$ \rightarrow \text{trivial extension}

else $S_6 > X$ \rightarrow \text{swap}

$S_1 | S_2 | S_3 | S_4 | S_5 | X | S_6 | ? | ? | ? | ?$
sorted prefix

| S_1 | S_2 | S_3 | S_4 | S_5 | S_6 | ? | ? | ? | ? |

- **if** $S_6 \leq X$ \[\rightarrow\] trivial extension
- **else** $S_6 > X$ \[\rightarrow\] swap & compare X to S_5

| S_1 | S_2 | S_3 | S_4 | S_5 | S_6 | ? | ? | ? | ? |
sorted prefix

\[
S_1 \ | \ S_2 \ | \ S_3 \ | \ S_4 \ | \ S_5 \ | \ S_6 \ | \ \ \ ? \ | \ ? \ | \ ? \ | \ ? \ | \ ?
\]

if \(S_6 \leq X \) \rightarrow \text{trivial extension}

else \(S_6 > X \) \rightarrow \text{swap \& compare } X \text{ to } S_5

\[
S_1 \ | \ S_2 \ | \ S_3 \ | \ S_4 \ | \ S_5 \ | \ S_6 \ | \ ? \ | \ ? \ | \ ? \ | \ ? \ | \ ?
\]

\?

\text{etc}

If \(\text{prefix size } = j \) then we can insert \(X \) after at most \(j \) comparisons
\leq j \text{ comparisons} \rightarrow \text{ increase the sorted prefix size from } j \text{ to } j+1

Terminate when prefix size = n \quad \text{(entire array)}
\leq j \text{ comparisons } \rightarrow \text{ increase the sorted prefix size from } j \text{ to } j+1

Terminate when prefix size = n \text{ (entire array)}

\text{comparisons} \leq \sum_{j=1}^{n-1} j = 1 + 2 + 3 + \cdots + (n-1)
≤ j comparisons → increase the sorted prefix size from j to j + 1

Terminate when prefix size = n (entire array)

\[\text{comparisons} \leq \sum_{j=1}^{n-1} j = 1 + 2 + 3 + \cdots + (n-1) = \frac{n(n-1)}{2} \]

\[= \frac{1}{2} n^2 - \frac{1}{2} n = \text{worst case } \# \text{comparisons} \]
≤ \text{j comparisons} \rightarrow \text{increase the sorted prefix size from j to j+1}

Terminate when prefix size = n (entire array)

\text{comparisons} \leq \sum_{j=1}^{n-1} j = 1 + 2 + 3 + \cdots + (n-1) = \frac{n(n-1)}{2} = \frac{1}{2}n^2 - \frac{1}{2}n = \text{worst case comparisons}

To actually implement, we need extra time & space

but just a constant amount per comparison e.g., 5 \cdot \left(\frac{1}{2}n^2 - \frac{1}{2}n \right)
At an introductory level:

- we don't focus on whether it takes 1 or 2 or 5 operations to compare, swap & iterate: $5 \cdot \left(\frac{1}{2} n^2 - \frac{1}{2} n \right)$
At an introductory level:

- we don't focus on whether it takes 1 or 2 or 5 operations to compare, swap & iterate: $5 \cdot \left(\frac{1}{2} n^2 - \frac{1}{2} n \right)$

- we don't really care about non-leading terms: $5 \cdot \left(\frac{1}{2} n^2 - \frac{1}{2} n \right)$
At an introductory level:

- we don't focus on whether it takes 1 or 2 or 5 operations
to compare, swap & iterate: \(5 \cdot \left(\frac{1}{2} n^2 - \frac{1}{2} n \right) \)

- we don't really care about non-leading terms: \(5 \cdot \left(\frac{1}{2} n^2 - \frac{1}{2} n \right) \)

When \(n \) is HUGE, both of the above are unimportant.
At an introductory level:

- we don't focus on whether it takes 1 or 2 or 5 operations to compare, swap & iterate: \[5 \cdot \left(\frac{1}{2} n^2 - \frac{1}{2} n \right) \]

- we don't really care about non-leading terms: \[5 \cdot \left(\frac{1}{2} n^2 - \frac{1}{2} n \right) \]

When \(n \) is HUGE, both of the above are unimportant.

\[
\begin{bmatrix}
\text{see } & 5 \cdot \left(\frac{1}{2} n^2 - \frac{1}{2} n \right)
\end{bmatrix}
\]

\[
\begin{bmatrix}
\text{interpret } & n^2
\end{bmatrix}
\]
At an introductory level:

- we don't focus on whether it takes 1 or 2 or 5 operations to compare, swap & iterate: \(5 \cdot \left(\frac{1}{2}n^2 - \frac{1}{2}n\right)\)

- we don't really care about non-leading terms: \(5 \cdot \left(\frac{1}{2}n^2 - \frac{1}{2}n\right)\)

When \(n\) is HUGE, both of the above are unimportant.

\[
\begin{aligned}
\text{see } & 5 \cdot \left(\frac{1}{2}n^2 - \frac{1}{2}n\right) \\
\text{interpret } & n^2 \\
\end{aligned}
\]

This leads to \(\Theta\)-notation aka big-\(O\) notation