QUICKSORT

An in-place divide & conquer algorithm

-DIVIDE: choose a pivot & partition

\[\begin{array}{cccccccccc}
\end{array} \]

\[\Rightarrow \]

\[\begin{array}{cccccccccc}
<x & X & >x
\end{array} \]

-CONQUER: Quicksort each side

Unlike Mergesort, there is no Combine phase.

\[T(n) = \Theta(n) + T(j-1) + T(n-j) \]
DIVIDE: choose a pivot & partition

arbitrarily choose first

Grow "prefix" of smaller elements

Grow suffix of larger elements

Now either the two sides meet or we can swap

... continue
- **DIVIDE**: choose a pivot & partition

 arbitrarily choose first

 Grow “prefix” of smaller elements
 Grow suffix of larger elements

 Now either the two sides meet or we can **SWAP**

 ...continue
- **DIVIDE:** choose a pivot & partition

 arbitrarily choose first

 Grow "prefix" of smaller elements

 Grow suffix of larger elements

 Now either the two sides meet or we can **SWAP**

 ... continue
Divide: choose a pivot & partition arbitrarily choose first

Grow "prefix" of smaller elements Grow suffix of larger elements

Now either the two sides meet or we can swap

...continue
- **DIVIDE**: choose a pivot & partition
 arbitrarly choose first

| 10 | 8 | 3 | 12 | 7 | 15 | 20 | 30 | 5 | 2 | 29 | 14 |

Grow "prefix" of smaller elements
Grow suffix of larger elements

Now either the two sides meet or we can SWAP
- **DIVIDE:** choose a **pivot** & partition

There are stable versions as well
What is the worst-case time complexity, and why?

\[T(n) = T(0) + T(n-1) + \Theta(n) = \Theta(n^2) \]

What would be ideal?

\[T(n) \leq 2 \cdot T\left(\frac{n}{2}\right) + \Theta(n) = \Theta(n \log n) \]

Why use Quicksort? We expect \(\Theta(n \log n) \) ... with a small constant (and it's in-place, and stable)
What if we **always** split "sort-of-evenly"?

e.g., \(T(n) = T\left(\frac{n}{10}\right) + T\left(\frac{9n}{10}\right) + c\cdot n \)

Any constant-fraction-split will give \(\Theta(n\log n) \)
What if we alternate between **ideal** & **bad** splits? \(\text{ (Lucky vs Unlucky) } \)

\[
\begin{align*}
L(n) &= 2U\left(\frac{n}{2}\right) + dn \\
U(n) &= L(n-1) + dn
\end{align*}
\]

\[
L(n) = 2 \left[L\left(\frac{n}{2} - 1\right) + d \frac{n}{2} \right] + dn \\
\leq 2 \cdot L\left(\frac{n}{2}\right) + 2dn = \Theta(n \log n)
\]
Expected time: call a split balanced if pivot ranks in $[\frac{n}{4} \ldots \frac{3n}{4}]$
unbalanced otherwise

Worst case if balanced split: $T(n) \leq T(\frac{3n}{4}) + T(\frac{n}{4}) + dn$

Worst case if unbalanced split: $T(n) \leq T(n)+dn$

Each split has a 50% chance of being balanced

$T(n) \leq 0.5(T(n)+dn) + 0.5 \cdot (T(\frac{3n}{4}) + T(\frac{n}{4}) + dn)$

$0.5 T(n) \leq dn + 0.5(T(\frac{3n}{4}) + T(\frac{n}{4}))$

$T(n) \leq T(\frac{3n}{4}) + T(\frac{n}{4}) + 2dn = \Theta(n \log n)$