The 3 main operations on data structures:

- **SEARCH**
 - \(O(n)\) [\(O(\log n)\) sorted]

- **INSERT**
 - \(O(n)\) (if maintaining sorted)

- **DELETE**
 - \(O(n)\) (if we don't want gaps)

How fast can we do these?

- **SEARCH**
 - \(O(\log n)\)

- **INSERT**
 - \(O(1)\)

- **DELETE**
 - \(O(n)\) \(O(1) + \text{search}\)
The 3 main operations on data structures:

\[
\text{SEARCH} \quad \text{INSERT} \quad \text{DELETE}
\]

\[O(1)\] expected with assumptions

- Not "expected worst-case", just "average".
- For some methods, some ops can be \[O(1)\] worst-case.
Hashing

Direct access table: good when keys are distinct & come from a small distribution \(U \).

E.g., \(U = \{0, 1, 2, ..., m-1\} \)

Say \(m = 74 \). Use an array:

\[
\begin{array}{ccccccccccccc}
0 & 1 & 2 & \cdots & \phi & \phi & \cdots & \phi & 73 \\
0 & 1 & 2 & k & \cdots & & & m-1
\end{array}
\]

\[\text{search}(T, 2) = 2 \quad \text{// insert}(T, k) \rightarrow T[k] = k \quad \text{// delete}(T, k) \rightarrow T[k] = \phi\]

All \(\Theta(1) \)
If U is larger than our available storage, m, but we are working with a subset S of U, where $|S| \leq m$.

h: hash function maps keys to T.

- $h(95617) = 0$
- $h(12837) = 1$
- $h(65112) = k$
Example: look up this semester's CS-2413 students using name & academic level (year)

U

S: class list

All possible name & year combinations

T

0

1

2

...

$m-1$
- Take first letter of name, map to number \(L = \{1 \ldots 26\} \)
- Map year similarly: sophomore = 2, junior = 3, etc \(Y = \{0 \ldots 9\} \)
- \(h(\text{student}) = 10 \cdot L + Y \) → unique for any value in \(\{L, Y\} \)

U

- \(S \):
 - class list
 - Cindy, junior

All possible name & year combinations

T

- \(h = 30 + 3 \)
- Cindy

PROBLEMS?

1. Some permanently empty slots
2. Other \(h = 33 \)?

\(m - 1 < 270 \)
• Could use more of the given info to design a more complicated \(h() \)
 \[\Rightarrow \] might minimize collisions

• But that involves costly processing
 and will need to be repeated if \(S \) changes (e.g. next semester)

• We want to keep a simple \(h() \) and deal with collisions
If CHAINING, we don’t need \(n < m \).

\(n > m \): **COLLISIONS are unavoidable**

If CHAINING, we don’t need \(n < m \).

\(n > m \): **COLLISIONS are unavoidable**

minimize collisions by spreading \(S \) into \(T \) evenly

\(\rightarrow \) want random-looking \(h() \) yet consistent / deterministic

What if many keys map to same slot?

CHAINING: Make a linked list.

Insert = \(\Theta(1) \)

Search/Delete = \(O(n) \) - list size

Must be consistent for each key
For a random h, every slot is equally likely: simple uniform hashing
Probability two given keys collide = $\frac{1}{m}$
Average # keys per slot = $\frac{n}{m} = \alpha = \text{“load factor”}$
$|S| = n$

$\frac{n}{m} = \alpha = \text{"load factor"}\$

average size of linked list.

This analysis assumes simple uniform hashing condition.

great if $\alpha = \Theta(1)$

Expected time of search (and delete) = $\Theta(1 + \alpha)$

1) $h(\text{key}) \rightarrow \text{slot \#} \rightarrow$ Assume $h()$ takes $\Theta(1)$ to evaluate

2) scan list \hspace{1cm} \rightarrow$ Expect to scan \gg half of a list
Choosing Hashing Functions depending on keys and m.

Objective: get uniform distribution of keys to slots - always

Ex: \(h(k) = k \mod m \) \(S = \) integers then it's fine.

"Division method" ... but if \(S = m \cdot i \) for \(i = 1, 2, 3 \) etc. **FAIL**

We don't want any specific input pattern to affect uniformity.

"Fails" if \(m \) has a small divisor. e.g. for even \(m \), if all keys are even, half of T: empty.
If \(m = 2^r \), then \(k \mod m = k \mod 2^r \) keeps only last \(r \) digits.

\[
r=6 : \quad k = 10110001111111010
\]

\(h \) depends on a small part of the input (key).

Heuristic: Choose \(m \): prime & not close to power of 2.
"Multiplication Method" (Just an FYI. You don't need to know this)

Suppose \(m = 2^r \), and we are using \(w \)-bit words (keys)

\[
h(k) = (A \cdot k) \mod 2^w \quad \text{right-shifted by} \quad w-r
\]

\(\Rightarrow \) some odd integer in \([2^{w-r} \ldots 2^{w-1}]\) \(\Rightarrow w \)-bit # with leading 1.

Heuristic: pick \(A \) not close to any power of 2

ex: \(m = 2^3 : r = 3 \quad w = 7 \)

\[
A = 1011001 \quad \Rightarrow A \cdot k = 1001010 \quad \underbrace{0110011}_{\text{remains after } \mod 2^7}
\]

\[
h(1101011) = 011
\]

If we had \(A = 2^{w-1} \) \(\Rightarrow A \cdot k = 1101011\underbrace{0000000}_{\text{some "randomness" to the process.}} \)

or, \(A = 2^5 \) \(\Rightarrow A \cdot k = 0011010\underbrace{1100000}_{\text{same}} \)