Starting at top-left of $n \times m$ grid, moving only down or right, how many ways to reach bottom-right?

Starting at top-left of $n \times m$ grid, moving only down or right, how many ways to reach bottom-right?

repetitive subproblems

want to avoid repetition

$A[r,c] = \min\{A[r-1,c], A[r,c-1]\}$

$\Omega(2^n)$ for $n \times n$
Starting at top-left of $n \times m$ grid, moving only down or right, how many ways to reach bottom-right?
How many times will we recurse in a unique way?

\[A[r, c] \rightarrow r \cdot c \text{ distinct subproblems} \]

- \(A[r-1, c] \)
- \(A[r, c-1] \)
- \([r-2, c] \)
- \([r-2, c-1] \)
- \([r-3, c] \)
- \([r-3, c-1] \)
- \([r-3, c-2] \)
- \([r-3, c-3] \)
- \([r-2, c-2] \)
- \([r-2, c-3] \)
- \([r-1, c-2] \)
- \([r-1, c-3] \)
- \([r, c-2] \)
- \([r, c-3] \)

how many times will we realize that we have seen a subproblem before?
MEMOIZATION (making memos)

For this problem, m x n table

Recursion:
first find \(A[r-1,c] \)
then find \(A[r,c-1] \)
MEMOIZATION (making memos)

For this problem, m x n table

Recursion:
- first find \(A[r-1,c] \)
- then find \(A[r,c-1] \)
MEMOIZATION (making memos)

For this problem, \(m \times n \) table

\[
\]

Recursion:
- first find \(A[r-1,c] \) ↑
- then find \(A[r,c-1] \) ←

\(\Theta(n,m) \) time & space
Starting at top-left of $n \times m$ grid, moving only down or right, how many ways to reach bottom-right?

Dynamic Programming (bottom-up: base cases first)

Fill any cell as long as what it depends on is full.
Starting at top-left of \(nxm \) grid, moving only down or right, how many ways to reach bottom-right?

Dynamic Programming (bottom-up: base cases first)

\[
\begin{array}{cccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline
1 & 2 \\
1 \\
1 \\
1 \\
1 \\
\end{array}
\]

\[
\]

Fill any cell as long as what it depends on is full.
Starting at top-left of \(n \times m\) grid, moving only down or right, how many ways to reach bottom-right?

DYNAMIC PROGRAMMING (bottom-up: base cases first)

\[
\]

Fill any cell as long as what it depends on is full.
Starting at top-left of nxm grid, moving only down or right, how many ways to reach bottom-right?

Dynamic Programming (bottom-up: base cases first)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>10</td>
<td>15</td>
<td>21</td>
<td>28</td>
<td>36</td>
<td>45</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>10</td>
<td>20</td>
<td>35</td>
<td>56</td>
<td>84</td>
<td>120</td>
<td>165</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td>15</td>
<td>35</td>
<td>70</td>
<td>126</td>
<td>210</td>
<td>330</td>
<td>495</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>6</td>
<td>21</td>
<td>56</td>
<td>126</td>
<td>252</td>
<td>462</td>
<td>792</td>
<td>1287</td>
</tr>
</tbody>
</table>

Fill any cell as long as what it depends on is full.
Starting at the top-left of an nxm grid, moving only down or right, how many ways to reach the bottom-right? ... with obstacles

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Each empty cell represents a possible path to reach the bottom-right.
- Obstacles are marked with 'O'.
Starting at top-left of $n \times m$ grid, moving only down or right, how many ways to reach bottom-right? ... with obstacles

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

"... with obstacles" refers to the cells marked with "0" which are considered obstacles.
Starting at top-left of nxm grid, moving only down or right, how many ways to reach bottom-right? ... with obstacles

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>15</td>
<td>35</td>
</tr>
</tbody>
</table>