BINARY CHARACTER CODES

for

LOSSLESS COMPRESSION

- Introduction to data compression - Khalid Sayood

& CLRS
BINARY CHARACTER CODES

How to encode ...ABACBBFAEFDACB... in binary, knowing full string
BINARY CHARACTER CODES

How to encode \text{...ABACBBFAEFDACB...} in binary, knowing full string

\text{alphabet}

A B C D E F

\begin{align*}
000 & \quad 001 & \quad 010 & \quad 011 & \quad 100 & \quad 101 & \quad \rightarrow \\
\end{align*}

3 bits/char.

impossible w/ 2 bits
BINARY CHARACTER CODES

How to encode ...ABACBBFAEDACB... in binary, knowing full string

alphabet

A B C D E F

000 001 010 011 100 101 → 3 bits/char.

Why not 0 1 01 011 100 101? impossible w/ 2 bits
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>10</td>
<td>terrible</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>10</td>
<td>terrible</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>00</td>
<td>11</td>
<td>ambiguous</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>10</td>
<td>terrible</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>00</td>
<td>11</td>
<td>ambiguous</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>110</td>
<td>111</td>
<td>uniquely decodable</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>-----</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>10</td>
<td>terrible</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>00</td>
<td>11</td>
<td>ambiguous</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>110</td>
<td>111</td>
<td>uniquely decodable</td>
</tr>
<tr>
<td>0</td>
<td>01</td>
<td>011</td>
<td>0111</td>
<td>?</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>Notes</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----------------------</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>10</td>
<td>terrible</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>00</td>
<td>11</td>
<td>ambiguous</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>110</td>
<td>111</td>
<td>uniquely decodable</td>
</tr>
<tr>
<td>0</td>
<td>01</td>
<td>011</td>
<td>0111</td>
<td>uniquely decodable, but not instantaneous</td>
</tr>
</tbody>
</table>

O1 = "B" or continue?
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>10</td>
<td>terrible</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>00</td>
<td>11</td>
<td>ambiguous</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>110</td>
<td>111</td>
<td>uniquely decodable</td>
</tr>
<tr>
<td>0</td>
<td>01</td>
<td>011</td>
<td>0111</td>
<td>uniquely decodable but not instantaneous</td>
</tr>
</tbody>
</table>

0
 01
 11

\[\begin{array}{c}
\text{A} \\
\text{C} \\
\text{CCCCC...} \\
\text{BBBBBBBBBBBB} \\
\text{C C C C C}
\end{array}\]
How do we know if a code is uniquely decodable?

0 01 11

A B C

A C C C C C ...

0 1 1 1 1 1 1}

resolved at end

B C C C C
How do we know if a code is uniquely decodable?

0 01 11

A

B

C

0 01 10

?

\{ resolved at end \\

A

\[\]

0

11

B

C

C

C

C

C

C
How do we know if a code is uniquely decodable?

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>01</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>01</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\text{resolved at end} \]

\[\text{Problem} \]
How do we know if a code is uniquely decodable?

If we encoded ACC... then decoding BCC... fails (and vice versa).

Problem

Whatever we encoded, both decodings work.
How do we know if a code is uniquely decodable?

$$A = c_1 c_2 c_3 \cdots c_K$$

$$B = c_1 c_2 c_3 \cdots c_K d_1 d_2 \cdots d_j$$

$$\{ A \text{ is a prefix of } B \}$$
How do we know if a code is uniquely decodable?

\[A = c_1 c_2 c_3 \ldots c_k \]

\[B = c_1 c_2 c_3 \ldots c_k d_1 d_2 \ldots d_j \]

\{ A \text{ is a prefix of } B \}

"dangling suffix"
How do we know if a code is uniquely decodable?

Not good: \[A = c_1c_2c_3 \ldots c_k \]
\[B = c_1c_2c_3 \ldots c_k d_1d_2 \ldots d_j \]

\{ A \text{ is a prefix of } B \ldots \}
\{ \text{“dangling suffix”...is another codeword} \}

\[
\begin{array}{ccc}
A & B & C \\
0 & 01 & 1
\end{array}
\]
How do we know if a code is uniquely decodable?

Not good: \[A = c_1 c_2 c_3 \ldots c_k \]
\[B = c_1 c_2 c_3 \ldots c_k d_1 d_2 \ldots d_j \]
\{ A is a prefix of B... and "dangling suffix"... is another codeword \}

(but also not a sufficient test)

\begin{align*}
0 & \rightarrow 01 \\
A & \rightarrow B \\
0 & \rightarrow 01 \\
\text{also ok?!}
\end{align*}
How do we know if a code is uniquely decodable?

Not good: \[A = c_1c_2c_3 \ldots c_k \]
\[B = c_1c_2c_3 \ldots c_k d_1d_2 \ldots d_j \]
\{ \text{A is a prefix of B...} \}
\text{ and }
\text{"dangling suffix"...is another codeword}

\begin{align*}
0 & \quad 01 \\
A & \quad B \\
\hline
0 & \quad 01 \\
0 & \quad 01 \\
10 & \quad \hat{=} \\
\hline
\end{align*}

Extended test: if \exists \text{ dangling suffix}
How do we know if a code is uniquely decodable?

Not good:

\[A = \ldots c_k \]

\[B = \ldots c_k d_1 d_2 \ldots d_j \]

\(A \) is a prefix of \(B \)...

and

"dangling suffix"... is another codeword

<table>
<thead>
<tr>
<th>0</th>
<th>01</th>
<th>11</th>
<th>😊</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>01</td>
<td>10</td>
<td>😎</td>
</tr>
</tbody>
</table>

Extended test: if \(\exists \) dangling suffix add it to a list (set)
How do we know if a code is uniquely decodable?

Not good: \[A = c_1 c_2 c_3 \ldots c_k \]
\[B = c_1 c_2 c_3 \ldots c_k d_1 d_2 \ldots d_j \]
\{ A is a prefix of B... and
"dangling suffix"... is another codeword

<table>
<thead>
<tr>
<th>0</th>
<th>01</th>
<th>11</th>
<th>😊</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>01</td>
<td>10</td>
<td>😋</td>
</tr>
</tbody>
</table>

Extended test: if \exists dangling suffix
add it to a list (set)
& repeat original test
on combined set
until no new listwords
get generated.

0 01 11 1
 OK
How do we know if a code is uniquely decodable?

Not good: \[A = c_1 c_2 c_3 \ldots c_k \]
\[
B = c_1 c_2 c_3 \ldots c_k \overline{d_1 d_2 \ldots d_j} \}
\] \(A\) is a prefix of \(B\)...
and
"dangling suffix"... is another codeword.

Extended test: if \(\exists\) dangling suffix add it to a list (set) & repeat original test on combined set until no new listwords get generated.

\[
\begin{array}{ccc}
0 & 01 & 11 \ \\
A & B & C \\
0 & 01 & 10 \ \\
\end{array}
\]
How do we know if a code is uniquely decodable?

Not good: \[A = c_1c_2c_3 \ldots c_k \]
\[B = c_1c_2c_3 \ldots c_k d_1d_2 \ldots d_j \]
\{ A is a prefix of B ... and "dangling suffix" ... is another codeword \}

Extended test: if \exists dangling suffix add it to a list (set) & repeat original test on combined set until no new listwords get generated.
How do we know if a code is uniquely decodable?

Not good: \[A = c_1 c_2 c_3 \ldots c_k \] \[B = c_1 c_2 c_3 \ldots c_k d_1 d_2 \ldots d_j \] \(\{ \) A is a prefix of B... and "dangling suffix"... is another codeword

Extended test: if \(\exists \) dangling suffix add it to a list (set) & repeat original test on combined set until no new listwords get generated.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>01</td>
<td>11</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>01</td>
<td>10</td>
</tr>
</tbody>
</table>

STILL OK

NOT OK

PROOF OMITTED

OK

!!!
BINARY CHARACTER CODES

How to encode \(...ABACBBFAEFDACB...\) in binary, knowing full string.

alphabet

A: 45
B: 13
C: 12
D: 16
E: 9
F: 5

3 bits/char.

impossible w/ 2 bits.
How to encode \(\ldots \text{ABACBBFAEFDACB} \ldots \) in binary, knowing full string

\textbf{alphabet}

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>13</td>
<td>12</td>
<td>16</td>
<td>9</td>
<td>5</td>
</tr>
</tbody>
</table>

\(\% \text{ frequencies} \)

<table>
<thead>
<tr>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
</tr>
</thead>
</table>

\(\rightarrow \) 3 bits/char.

impossible w/ 2 bits

\(\texttt{0 101 100 111 1101 1100} \) : Variable length code
How to encode \(\ldots \text{ABACBBFAEFDACB} \ldots \) in binary, knowing full string

alphabet

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>13</td>
<td>12</td>
<td>16</td>
<td>9</td>
<td>5</td>
</tr>
</tbody>
</table>

\[\sum (\text{freq. bits}) = 0.45 \cdot 1 + (0.13 + 0.12 + 0.16) \cdot 3 + (0.09 + 0.05) \cdot 4 \]

\[\text{average 3 bits/char.} \]

impossible w/ 2 bits

\[\text{Variable length code} \]
BINARY CHARACTER CODES

How to encode ...ABACBBFAEFDACB... in binary, knowing full string

alphabet

A B C D E F
45 13 12 16 9 5 : % frequencies
000 001 010 011 100 101 \rightarrow average 3 bits/char.
impossible w/ 2 bits

0 101 100 111 1101 1100 : Variable length code

\[\sum (\text{freq.bits}) \cdot \begin{align*}
0.45 \cdot 1 &+ (0.13 + 0.12 + 0.16) \cdot 3 &+ (0.09 + 0.05) \cdot 4 \\
\end{align*} \rightarrow \text{average 2.24 bits/char.} \]
BINARY CHARACTER CODES

How to encode \(\ldots ABACBBFAEFDACB \ldots \) in binary, knowing full string

alphabet

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>13</td>
<td>17</td>
<td>16</td>
<td>19</td>
<td>15</td>
</tr>
</tbody>
</table>

: % frequencies

000 001 010 011 100 101 \(\rightarrow \) average 3 bits/char.

impossible w/ 2 bits

10 000 010 011 11 001 : Variable length code

\[.2 \cdot 2 + (0.13+0.17+0.16) \cdot 3 + 0.19 \cdot 2 + 0.15 \cdot 3 \]\n
\(\rightarrow \) average 2.46 bits/char.
BINARY CHARACTER CODES

How to encode \ldots ABACBBFAEFDACB\ldots in binary, knowing full string

alphabet

\begin{align*}
A & \quad 95 \\
B & \quad 1 \\
C & \quad 1 \\
D & \quad 1 \\
E & \quad 1 \\
F & \quad 1 \\
\end{align*}

3rd example $\rightarrow 000 \quad 001 \quad 010 \quad 011 \quad 100 \quad 101 \Rightarrow \text{average 3 bits/char.}$

for fixed length: impossible w/ 2 bits

$1 \quad 000 \quad 001 \quad 0100 \quad 0101 \quad 011 : \text{Variable length code}$

$.95 \cdot 1 + (.01+.01) \cdot 3 + (.01+.01) \cdot 4 + .01 \cdot 3 \Rightarrow \text{average 1.12 bits/char.}$
How to encode AACBADDAEFDBACB...

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
</table>
| 45 | 13 | 12 | 16 | 9 | 5 | % frequencies
How to encode A A A C B A D A E F D A C B...

000 • 000 • 000 • 010 • 001 • 000 • 011 • 000 • 100 • 101 • 011 • 000 • 010 • 001...

0 • 0 • 0 • 100 • 101 • 0 • 110 • 1101 • 1100 • 111 • 0 • 100 • 101

A A A C B A D A E F D A C B...

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>13</td>
<td>12</td>
<td>16</td>
<td>9</td>
<td>5</td>
</tr>
</tbody>
</table>

: % frequencies

000 001 010 011 100 101 : fixed length code

0 101 100 111 1101 1100 : variable length code
How to encode: A A A C B A D A E F D A C B...

Fixed: 000000000010001000011000100101011000010001

Variable: 00010010101010110011001100110100010001

A B C D E F
45 13 12 16 9 5 : % frequencies
000 001 010 011 100 101 : fixed length code
0 101 100 111 1101 1100 : Variable length code

why ok?
Prefix codes: no code is a prefix of another, e.g., only A starts with 0

Unlike, say, A=01, B=011, C=1 → 011 = B or AC?
We still need to know when each code ends

How do we know there is no 0001?

0001001010111010101110011110100101

A B C D E F
45 13 12 16 9 5 : % frequencies
0 101 100 111 1101 1100 : Variable length (prefix) code
We still need to know when each code ends → use binary tree

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>13</td>
<td>12</td>
<td>16</td>
<td>9</td>
<td>5</td>
</tr>
</tbody>
</table>

: % frequencies

0 101 100 111 1101 1100 : Variable length (prefix) code
We still need to know when each code ends → use binary tree

A

45 13 12 16 9 5 : % frequencies
0 101 100 111 1101 1100 : Variable length (prefix) code
We still need to know when each code ends → use binary tree

A
B

45 13 12 16 9 5 : % frequencies
0 101 100 111 1101 1100 : Variable length (prefix) code
We still need to know when each code ends → use binary tree

A

B

C

D

E

F

45 13 12 16 9 5 : % frequencies
0 101 100 111 1101 1100 : Variable length (prefix) code
We still need to know when each code ends ➔ use binary tree

A

C B

D

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>13</td>
<td>12</td>
<td>16</td>
<td>9</td>
<td>5</td>
</tr>
</tbody>
</table>

: % frequencies

0 101 100 111 1101 1100 : Variable length (prefix) code
We still need to know when each code ends → use binary tree

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>13</td>
<td>12</td>
<td>16</td>
<td>9</td>
<td>5</td>
</tr>
</tbody>
</table>

: % frequencies

| 0 | 101 | 100 | 111 | 1101 | 1100 |

: Variable length (prefix) code
We still need to know when each code ends \rightarrow use binary tree

$00010010101101101001101010$

A

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>13</td>
<td>12</td>
<td>16</td>
<td>9</td>
<td>5</td>
</tr>
</tbody>
</table>

: % frequencies

010110111111011100 : Variable length (prefix) code
We still need to know when each code ends \(\rightarrow \) use binary tree

000100101001001101110101

AA

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>13</td>
<td>12</td>
<td>16</td>
<td>9</td>
<td>5</td>
</tr>
</tbody>
</table>

: % frequencies

0 101 100 111 1101 1100

: Variable length (prefix) code
We still need to know when each code ends → use binary tree

```
00010010101101101101100110100101
AAA
```

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>13</td>
<td>12</td>
<td>16</td>
<td>9</td>
<td>5</td>
</tr>
</tbody>
</table>

: % frequencies

```
0 101 100 111 1101 1100 : Variable length (prefix) code
```
We still need to know when each code ends → use binary tree

AAAA

A B C D E F
45 13 12 16 9 5 : % frequencies
0 101 100 111 1101 1100 : Variable length (prefix) code
We still need to know when each code ends → use binary tree

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>13</td>
<td>12</td>
<td>16</td>
<td>9</td>
<td>5</td>
</tr>
</tbody>
</table>

: % frequencies

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>01</th>
<th>100</th>
<th>11</th>
<th>1101</th>
<th>1100</th>
</tr>
</thead>
</table>

: Variable length (prefix) code
We still need to know when each code ends → use binary tree

AAA C

A B C D E F
45 13 12 16 9 5 : % frequencies
0 101 100 111 1101 1100 : Variable length (prefix) code
We still need to know when each code ends → use binary tree

AAA c

A B C D E F
45 13 12 16 9 5 : % frequencies
0 101 100 111 1101 1100 : Variable length (prefix) code
We still need to know when each code ends. → Use binary tree.

AAA C B

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>13</td>
<td>12</td>
<td>16</td>
<td>9</td>
<td>5</td>
</tr>
</tbody>
</table>

% frequencies

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
</table>

Variable length (prefix) code
We still need to know when each code ends → use binary tree

000100101011011011011110100101

AAA C BA

A B C D E F
45 13 12 16 9 5 : % frequencies
0 101 100 111 1101 1100 : Variable length (prefix) code
We still need to know when each code ends → use binary tree

0001001010110110101101001100101
AAA C BA D etc

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>13</td>
<td>12</td>
<td>16</td>
<td>9</td>
<td>5</td>
</tr>
</tbody>
</table>

: % frequencies

0 101 100 111 1101 1100 : Variable length (prefix) code
Huffman code

developed in 1951 as a solution to a class assignment

typical compression 20-90%
Huffman code: Make n trees of size 1: one tree per character.

A B C D E F
45 13 12 16 9 5 : %
Huffman code: Make \(n \) trees of size 1: one tree per character.

- The 2 roots with lowest frequencies become siblings.
Huffman code: Make n trees of size 1: one tree per character.

- The 2 roots with lowest frequencies become siblings.
Huffman code:
Make n trees of size 1: one tree per character.
The 2 roots with lowest frequencies become siblings.
Their new parent gets the sum of their frequencies.

A 45
B 13
C 12
D 16
E 9
F 5

14
Huffman code:

Make n trees of size 1: one tree per character.
The 2 roots with lowest frequencies become siblings.
Their new parent gets the sum of their frequencies.
Repeat
Huffman code:

Make n trees of size 1: one tree per character.
The 2 roots with lowest frequencies become siblings.
Their new parent gets the sum of their frequencies.
Repeat.

A 45
B 13
C 12
D 16
E 9
F 5

25

12

13

14

5

9

F

E
Huffman code: Make \(n \) trees of size 1: one tree per character. The 2 roots with lowest frequencies become siblings. Their new parent gets the sum of their frequencies. Repeat.
Huffman code:

Make \(n \) trees of size 1: one tree per character.
The 2 roots with lowest frequencies become siblings.
Their new parent gets the sum of their frequencies.
Repeat

\[
\begin{array}{ccccccc}
A & B & C & D & E & F & \% \\
45 & 13 & 12 & 16 & 9 & 5 & \\
\end{array}
\]
Huffman code:

- Make \(n \) trees of size 1: one tree per character.
- The 2 roots with lowest frequencies become siblings.
- Their new parent gets the sum of their frequencies.
- Repeat
Huffman code: Make n trees of size 1: one tree per character.
The 2 roots with lowest frequencies become siblings.
Their new parent gets the sum of their frequencies.

Repeat
Huffman code:

Make n trees of size 1: one tree per character.
The 2 roots with lowest frequencies become siblings.
Their new parent gets the sum of their frequencies.
Repeat.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>13</td>
<td>12</td>
<td>16</td>
<td>9</td>
<td>5</td>
</tr>
</tbody>
</table>

55

25

12

C

13

B

14

16

5

F

9

E

D
Huffman code:

Make n trees of size 1: one tree per character.
The 2 roots with lowest frequencies become siblings.
Their new parent gets the sum of their frequencies.
Repeat until 1 root:

A 45
B 13
C 12
D 16
E 9
F 5 : %
Huffman code: (greedy algo)

Make \(n \) trees of size 1: one tree per character. The 2 roots with lowest frequencies become siblings. Their new parent gets the sum of their frequencies. Repeat until 1 root:

\[
\begin{array}{c}
\text{A} & \text{B} & \text{C} & \text{D} & \text{E} & \text{F} \\
45 & 13 & 12 & 16 & 9 & 5
\end{array}
\]

\[
0 \quad 101 \quad 100 \quad 111 \quad 1101 \quad 1100 : \text{Huffman code}
\]
Huffman code: Make n trees of size 1: one tree per character. The 2 roots with lowest frequencies become siblings. Their new parent gets the sum of their frequencies. Repeat until 1 root:

- Optimal! to show
- Not unique
 - arbitrary sibling order
 - weights could be equal

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>45</td>
<td>13</td>
<td>12</td>
<td>16</td>
<td>9</td>
<td>5</td>
<td>%</td>
</tr>
<tr>
<td>0</td>
<td>101</td>
<td>100</td>
<td>111</td>
<td>1101</td>
<td>1100</td>
<td>:</td>
<td>Huffman code</td>
</tr>
</tbody>
</table>
Huffman code: time to build?
Huffman code: easy to implement in $O(n \log n)$ time & $\Theta(n)$ space

priority queue to identify 2 lowest frequencies

initialize with n chars: $\Theta(n)$

extract twice, insert new parent node: $O(\log n)$

$n-1$ rounds
Huffman code: easy to implement in $O(n \log n)$ time & $\Theta(n)$ space

priority queue to identify 2 lowest frequencies

- initialize with n chars: $\Theta(n)$
- extract twice, insert new parent node: $O(\log n)$
- $n-1$ rounds

$O(n \log n \log n)$ possible, using a van Emde Boas tree

CLRS ch. 20
Huffman code: Not unique

Must store representation, like BST, otherwise decoder can't work.

\[\Rightarrow \text{costs extra space \(\ddagger \)} \]
OPTIMALITY

\[
\text{minimize } \sum_{\text{all chars}} (\text{freq.} \cdot \text{bit length}) = \sum (\text{freq.} \cdot \text{node depth})
\]

- Not optimal number of bits in general (more later)

- We get OPT assuming one codeword per character
OPTIMALITY

\[
\text{minimize } \sum_{\text{all chars}} (\text{freq.} \cdot \text{bit length}) = \sum_{\text{all chars}} (\text{freq.} \cdot \text{node depth})
\]

Claim: there is always a prefix code that achieves OPT

- CLRS skips the proof
- See Sayood 2.4.3: 3-page proof
Claim 2:
\text{OPT} \text{ tree can't have an internal node w/ 1 child}
Optimality

minimize $\sum (\text{freq} \cdot \text{bit length}) = \sum (\text{freq} \cdot \text{node depth})$

Claim 2:

OPT tree can't have an internal node w/ 1 child

\Downarrow contract, improve Σ, still a prefix code: contradiction
OPTIMALITY
minimize $\sum (\text{freq.} \cdot \text{node depth})$

✓ OPT tree can't have an internal node w/ 1 child

Claim 3:

∃ OPT tree w/ 2 lowest frequencies as siblings at lowest level
Optimality

\[
\text{minimize } \sum (\text{freq.} \cdot \text{node depth})
\]

- OPT tree can't have an internal node with 1 child

Claim 3:

∃ OPT tree w/ 2 lowest frequencies as siblings at lowest level

\[\iff\] by contradiction: take "OPT", swap nodes, improve \(\Sigma\)
minimize \(\sum (\text{freq.} \times \text{node depth}) \)

- OPT tree can't have an internal node w/ 1 child
- \(\exists \) OPT tree w/ 2 lowest frequencies as siblings at lowest level
OPTIMALITY

minimize $\sum (\text{freq.} \cdot \text{node depth})$

- OPT tree can't have an internal node with 1 child
- \exists OPT tree with 2 lowest frequencies as siblings at lowest level

Last claim:

if we merge 2 lowest frequencies x,y in tree T
and new tree T' is OPT'
then T was OPT.
OPTIMALITY

\[\text{minimize } \sum (\text{freq.} \cdot \text{node depth}) \]

✓ OPT tree can't have an internal node with 1 child

✓ ∃ OPT tree with 2 lowest frequencies as siblings at lowest level

Last claim:

if we merge 2 lowest frequencies \(x,y\) in tree \(T\) and new tree \(T'\) is OPT' (node \(z : x.\text{freq} + y.\text{freq}\))

then \(T\) was OPT.

Weight diff for \(T,T' = 1 \cdot (x.\text{freq} + y.\text{freq})\) // all other nodes unchanged
OPTIMALITY

minimize \(\sum (\text{freq} \cdot \text{node depth}) \)

✓ OPT tree can't have an internal node w/ 1 child
✓ ∃ OPT tree w/ 2 lowest frequencies as siblings at lowest level

Last claim:

if we merge 2 lowest frequencies \(x, y \) in tree \(T \) and new tree \(T' \) is OPT' (node \(z : x.f\text{freq} + y.f\text{req} \))
then \(T \) was OPT.

Weight diff for \(T, T' = 1 \cdot (x.f\text{req} + y.f\text{req}) \) // all other nodes unchanged

Same for diff of any OPT tree that beats \(T \): \(x, y \) must be siblings so we can contract them & get a tree that beats \(T' \); contradiction
OPTIMALITY

minimize \(\sum (\text{freq.} \cdot \text{node depth}) \)

\(\checkmark \) OPT tree can’t have an internal node \(w/ 1 \) child

\(\checkmark \) \(\exists \) OPT tree \(w/ 2 \) lowest frequencies as siblings at lowest level

\(\checkmark \) if we merge \(2 \) lowest frequencies \(x,y \) in tree \(T \) and new tree \(T' \) is optimal then \(T \) was OPT.

\(\checkmark \) merge 2 smallest, apply induction, uncontract \(\rightarrow \) get OPT

\(\checkmark \) incremental construction is equivalent
A few words about extensions & other ideas
Huffman code with presorted frequencies

- use 2 queues instead of 1 priority queue
Huffman code with presorted frequencies

- use 2 queues instead of 1 priority queue
 - place frequencies (single nodes) in queue A
 - queue B holds merged nodes
Huffman code with presorted frequencies

- use 2 queues instead of 1 priority queue
 - place frequencies (single nodes) in queue A
 - queue B holds merged nodes
- merge two smallest frequencies & insert in B, repeat

(min two elements are always at top 2+2 positions)
Huffman code with presorted frequencies \[O(n) \] time

- Use 2 queues instead of 1 priority queue
 - Place frequencies (single nodes) in queue A
 - Queue B holds merged nodes
- Merge two smallest frequencies & insert in B, repeat
 (min two elements are always at top 2+2 positions)
- Proof of correctness is straightforward
Huffman code with minimum codeword length (variance)
Huffman code with minimum codeword length (variance)

- prioritize merging shorter trees
 - sort all frequencies, place in queue A
 - use queue B as for presorted data
Huffman code with minimum codeword length (variance)

- prioritize merging shorter trees
 - sort all frequencies, place in queue A
 - use queue B as for presorted data
 - when dequeuing min two elements, prioritize first queue if tied
Decompressing options (affects storage/transmission)

- store frequencies (could be really bad)
 - store tree
 - use "canonical tree"

: adaptive Huffman coding
0.8 0.02 0.18
0.8 + 0.04 + 0.36 = 1.2

Improve this by encoding blocks
A B C
0 11 10
0.8 0.02 0.18

0.8 + 0.04 + 0.36 = 1.2

AA 0.64
AB 0.016
AC 0.144
BA 0.016
BB 0.0004
BC 0.0036
CB 0.0036
CC 0.0324
\[0.8 + 0.04 + 0.36 = 1.2\]

<table>
<thead>
<tr>
<th>Pair</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>0.64</td>
</tr>
<tr>
<td>AB</td>
<td>0.016</td>
</tr>
<tr>
<td>AC</td>
<td>0.144</td>
</tr>
<tr>
<td>BA</td>
<td>0.016</td>
</tr>
<tr>
<td>BB</td>
<td>0.0004</td>
</tr>
<tr>
<td>BC</td>
<td>0.0036</td>
</tr>
<tr>
<td>CA</td>
<td>0.144</td>
</tr>
<tr>
<td>CB</td>
<td>0.0036</td>
</tr>
<tr>
<td>CC</td>
<td>0.0324</td>
</tr>
</tbody>
</table>
$0.8 + 0.04 + 0.36 = 1.2$

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>0</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>0.8</td>
<td>0.02</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0.0004

0.0036

0.0324

AA 0.64
AB 0.016
AC 0.144
BA 0.016
BB 0.0004
BC 0.0036
CA 0.144
CB 0.0036
CC 0.0324
0.8 + 0.04 + 0.36 = 1.2

AA 0.64
AB 0.016
AC 0.144
BA 0.016
BB 0.0004
BC 0.0036
CA 0.144
CB 0.0036
CC 0.0324
$0.8 + 0.04 + 0.36 = 1.2$

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>O</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

0.8  0.02  0.18

AA 0.64
AB 0.016
AC 0.144
BA 0.016
BB 0.0004
BC 0.0036
CA 0.144
CB 0.0036
CC 0.0324

0.016
0.0236
0.0076
0.0004
0.0396
0.016
0.0036
0.004

AB
BA
BB
CB
CA
\[
0.8 + 0.04 + 0.36 = 1.2
\]
0.8 + 0.04 + 0.36 = 1.2

0.8  0.02  0.18
A  B  C
0  11  10

0.8  0.02  0.18

0.8 + 0.04 + 0.36 = 1.2

AA  0.64
AB  0.016
AC  0.144
BA  0.016
BB  0.0004
BC  0.0036
CA  0.144
CB  0.0036
CC  0.0324
0.8 + 0.04 + 0.36 = 1.2
A B C
0 11 10
0.8 0.02 0.18

0.8 + 0.04 + 0.36 = 1.2

<table>
<thead>
<tr>
<th>AA</th>
<th>0.64</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>0.016</td>
<td>1 0 1 0 1</td>
</tr>
<tr>
<td>AC</td>
<td>0.144</td>
<td>1 1</td>
</tr>
<tr>
<td>BA</td>
<td>0.016</td>
<td>1 0 1 0 0 0</td>
</tr>
<tr>
<td>BB</td>
<td>0.0004</td>
<td>1 0 1 0 0 1 0 1</td>
</tr>
<tr>
<td>BC</td>
<td>0.0036</td>
<td>1 0 1 0 0 1 1</td>
</tr>
<tr>
<td>CA</td>
<td>0.144</td>
<td>1 0 0</td>
</tr>
<tr>
<td>CB</td>
<td>0.0036</td>
<td>1 0 1 0 0 1 0 0</td>
</tr>
<tr>
<td>CC</td>
<td>0.0324</td>
<td>1 0 1 1</td>
</tr>
</tbody>
</table>

1.7228 bits/symbol
\[
\frac{1.7228}{2} = 0.8614
\]
errors do not propagate (Huffman: one incorrect bit can ruin everything)
TBC?
errors do not propagate (Huffman: one incorrect bit can ruin everything)