1) start w/ any vertex s; set $w(s)=0$
2) set $w(\neq s) = \infty$ & put all in pr. queue
3) while pr. queue not empty
 \[x: \text{extract-min} \ & \text{add edge to } T \]
 mark $x \rightarrow$ in T.
 for each unmarked neighbor v of x
 if $w(v) > w(v,x)$ then decrease.
Remember PRIM'S ALGORITHM for MST?

(after initializing)
while pr.queue not empty
 x: extract-min & add edge to T
 mark x -> in T.
 for each unmarked neighbor v of x
 if w(v) > w(v,x) then decrease.
(after initializing)
while pr.queue not empty
 x: extract-min & add edge to T
 mark x -> in T.
 for each unmarked neighbor v of x
 if w(v) > w(v,x) then decrease.
 RELAX(x,v)
Dijkstra's Algorithm for SSSP
(1956 - 1959)

(after initializing)
while pr.queue not empty
 x: extract-min & add edge to T
 mark x → in T.
 for each neighbor v of x
 relax(x, v)
Dijkstra’s Algorithm for SSSP

(after initializing)

while pr.queue not empty

 x: extract-min & add edge to T

 mark x→ in T.

 for each neighbor v of x
 RELAX(x,v)
Dijkstra’s Algorithm for SSSP

(after initializing)
while pr.queue not empty
 x: extract-min & add edge to T
 mark x → in T.
 for each neighbor v of x
 RELAX(x, v)

extract source & relax two edges
Dijkstra's Algorithm for SSSP

(after initializing)

while pr.queue not empty
 x: extract-min & add edge to T
 mark x→ in T.
 for each neighbor v of x
 RELAX(x,v)

extract min: 10
Dijkstra's Algorithm for SSSP

(after initializing)
while pr.queue not empty
 x: extract-min & add edge to T
 mark x → in T.
 for each neighbor v of x
 RELAX(x,v)

Relax neighbors of 10
DIJKSTRA'S ALGORITHM for SSSP

(after initializing)
while pr.queue not empty
 x: extract-min & add edge to T
 mark x→ in T.
 for each neighbor v of x
 RELAX(x,v)
Dijkstra's Algorithm for SSSP

(after initializing)

while pr.queue not empty

 x: extract-min & add edge to T

 mark x→ in T.

 for each neighbor v of x

 RELAX(x,v)

No update from relaxing
DIJKSTRA'S ALGORITHM for SSSP

(after initializing)
while pr.queue not empty
x: extract-min & add edge to T
mark x → in T.
for each neighbor v of x
RELAX(x, v)
Dijkstra's Algorithm for SSSP

(after initializing)

while pr.queue not empty
 x: extract-min & add edge to T
 mark x -> in T.
 for each neighbor v of x
 RELAX(x, v)
DIJKSTRA'S ALGORITHM for SSSP

(after initializing)

while pr.queue not empty
x: extract-min & add edge to T
mark x → in T.
for each neighbor v of x
RELAX(x,v)
DIJKSTRA’S ALGORITHM for SSSP

(after initializing)

while priority_queue not empty

x: extract-min & add edge to T
mark x → in T.
for each neighbor v of x
RELAX(x, v)
Dijkstra's Algorithm for SSSP

(after initializing)

while pr.queue not empty

\[\text{x: extract-min \& add edge to T} \]

mark \(x \rightarrow \) in \(T \).

for each neighbor \(v \) of \(x \)

RELAX(\(x, v \))
DIJKSTRA'S ALGORITHM for SSSP

(after initializing)
while pr.queue not empty
 x: extract-min & add edge to T
 mark x -> in T.
 for each neighbor v of x
 RELAX(x, v)
DIJKSTRA'S ALGORITHM for SSSP

(after initializing)
while pr.queue not empty
 x: extract-min & add edge to T
 mark x -> in T.
 for each neighbor v of x
 RELAX(x,v)

etc

time?
Dijkstra's Algorithm for SSSP

(after initializing)

while priority queue not empty

 x: extract-min & add edge to T
 mark x → in T.

 for each neighbor v of x
 RELAX(x,v)

 etc

time: $O(V^2)$ or $O(E \log V)$

(like Prim's algo) // for fancier see CLRS
Correctness:

assume
we have shortest path to a set of red vertices
Correctness:

Assume we have shortest path to a set of red vertices.

Somewhere outside this set is a vertex v with shortest path $\equiv [\text{a path in known set}] + \text{black edge}$.
Correctness:

Assume we have shortest path to a set of red vertices.

Somewhere outside this set is a vertex v with shortest path $=$

= [a path in known set] + black edge

Any other path $s \rightarrow v$ will cost more.
Correctness:

assume we have shortest path to a set of red vertices

Somewhere outside this set is a vertex \(v \) with shortest path =

\[[\text{a path in known set}] + \text{black edge} \]

Any other path \(s \rightarrow v \) will cost more