

1



Abstract—Packet classification is one of the major challenges

today in designing high-speed routers and firewalls, as it involves

sophisticated multi-dimensional searching. Ternary Content

Addressable Memory (TCAM) has been widely used to implement

packet classification, thanks to its parallel search capability and

constant processing speed. However, TCAMs have limitations of

high cost and high power consumption, which ignite the desire to

reduce TCAM usage. Recently, many works have been presented

on this subject due to two opportunities. One is the well-known

range expansion problem for packet classifiers to be stored in

TCAM entries. The other is that there often exists redundancy

among rules. In this paper, we propose a novel technique called

Block Permutation (BP) to compress the packet classification rules

stored in TCAMs. Unlike previous schemes that compress

classifiers by converting the original classifiers to semantically

equivalent classifiers, the BP technique innovatively finds

semantically nonequivalent classifiers to achieve compression by

performing block-based permutations on the rules represented in

Boolean Space. We have developed an efficient heuristic approach

to find permutations for compression and have designed its

hardware implementation by using Field-Programmable Gate

Array (FPGA) to preprocess incoming packets. Our experiments

with ClassBench classifiers and Internet Service Provider (ISP)

real-life classifiers show that the proposed BP technique can

significantly reduce 31.88% TCAM entries on average, in

addition to the reduction contributed by other state-of-the-art

schemes.

Index Terms—Classifier Minimization, Logic Optimization,

Packet Classification, Ternary Content-Addressable Memory

(TCAM), Field-Programmable Gate Array (FPGA).

I. INTRODUCTION

acket classification is used as a basic building block in

many network applications, such as quality of service

(QoS), flow-based routing, firewalls, and network address

translation (NAT) [1][2]. In packet classification, information

is extracted from the packet header and compared against a

classifier consisting of a list of rules. Once an incoming packet

matches some rules, it will be processed based on the action

Manuscript received December 20, 2012; revised September 16, 2013 and

May 02, 2014; accepted January 19, 2015; approved by IEEE/ACM

TRANSACTIONS ON NETWORKING Editor I. Keslassy. A preliminary version of

this paper [26] was presented in part at the IEEE INFOCOM, mini-conference,
Orlando, Florida, USA, March 2012.

R. Wei is currently with Tensorcom Inc., USA. This work was conducted

while he was with New York University Polytechnic School of Engineering.
(e-mail: rchwei@gmail.com). Y. Xu and H. J. Chao are with New York

University Polytechnic School of Engineering, Brooklyn, NY 11201 USA.

(e-mail: {yang, chao}@nyu.edu).

associated with the highest-priority matched rule.

 Table I gives a sample classifier with three rules, in which

each rule specifies a pattern of five fields: source IP and

destination IP (prefixes), source port and destination port

(ranges), and protocol type. According to the traditional

viewpoint, a packet classifier consists of five dimensions due to

the five fields. But in this paper, from the geometric point of

view, we treat each rule as a block in the 104-dimensional

Boolean Space corresponding to the 104 bits in the five fields.

TABLE I
A SAMPLE PACKET CLASSIFIER

ProtocolSource IP Dest IP Source Port Dest Port Action

Accept

Rule

R1

166.111.*.*

* 192.168.1.1

192.168.1.*

[1, 5] UDP

** *R2

R3 * * * * * Deny

[1, 5]

Deny

Ternary Content Addressable Memory (TCAM) is widely

used to implement packet classification because of its parallel

search capability and constant processing speed. A TCAM has

a massive array of entries [3], in which each bit can be

represented as ‘0’, ‘1’, or ‘*’ (wildcard). Before a rule can be

stored in TCAMs, its range fields have to be converted to

prefixes. This would cause the well-known range expansion

problem. For example, rule R2 in Table I requires only one

TCAM entry since it doesn’t contain any range in all fields. But

for rule R1, both the source port and destination port contain a

range [1, 5]. So both of them need to be expanded to three

prefixes, i.e., “001”, “01*”, and “10*”. The combination of the

prefix specifications of the two ranges makes R1 consumes 3 ×
3 = 9 TCAM entries. Besides, there often exists redundancy

among rules. For example, R2 is actually unnecessary and can

be safely removed from the classifier, because it is completely

covered by R3. These two problems lead to inefficiency in

TCAM use. Because TCAMs are expensive and power-hungry,

it is very important to reduce the number of TCAM entries

required to represent a classifier.

Previous works on TCAM reduction can be classified into

two categories, Range-Field Optimization and All-Field

Optimization. Range-field optimization schemes focus only on

the source port field and destination port field to address the

range expansion problem. Normally, the best compression of a

range-field optimization scheme is to reduce an expanded

classifier to the size before expansion. In this category, [4]

attempts to modify TCAM hardware architecture to support

range matching; [6][7] replace each range with a new binary

code to avoid range expansion; [5][9][25] try to expand a range

to a minimum number of binary codes; [8] first transforms

Finding Nonequivalent Classifiers in Boolean Space

to Reduce TCAM Usage

Rihua Wei, Member, IEEE, Yang Xu, Member, IEEE, and H. Jonathan Chao, Fellow, IEEE

P

 2

ranges to simplified ones, and then finds the minimum

expansion on the new ranges. The novelty of [8] is that it can

optimize rule length (some related works can also be found in

[10][11]). In the category of all-field optimization, proposed

schemes [12][13] [14][24] work on all the five fields to address

both the aforementioned problems based on the optimization of

ternary strings, which can be prefix or arbitrary ternary string.

The common part of all these schemes is to first expand all

ranges to prefixes, getting a new classifier with no range fields,

and then convert the non-range classifier to a semantically

equivalent one that consumes fewer TCAM entries. Because

all-field optimization schemes consider both the range

expansion and the redundancy among rules, they are able to

find a classifier that is smaller than the original one before

range expansion.

The new technique proposed in this paper, Block

Permutation (BP), is also an all-field optimization solution.

Distinct from previous schemes, BP finds semantically

nonequivalent classifiers. More specifically, it maps rules to

blocks in Boolean Space and swaps blocks (so called block

permutation, please refer Section V for a formal definition) to

seek opportunities of merging blocks. In BP, the incoming

packets need to be preprocessed before being compared against

the compressed classifier in TCAM. This preprocessing can be

implemented by FPGA. In this paper, we propose an efficient

heuristic algorithm to find permutations and present an FPGA

implementation methodology. Our experiments on ClassBench

[15] classifiers and ISP classifiers show that the BP technique

can significantly reduce TCAM entries.

The rest of this paper is organized as follows: Section II

reviews related works in detail and gives the motivation for BP.

Section III introduces BP technique with a warm-up example.

Section IV formally defines the BP problem and analyzes its

complexity. Section V proposes the heuristic BP algorithm to

compress classifiers. Section VI proposes an FPGA

implementation methodology. Section VII discusses the

strategy of classifier update. Section VIII presents the

experimental results. Finally, Section IX concludes the paper.

II. RELATED WORK AND MOTIVATION

Previous schemes find semantically equivalent classifiers to

reduce TCAM usage by taking advantage of two properties:

1) Action-Oriented. In packet classification, we are

interested in the action rather than the ID associated with the

matched rule. Therefore, we can modify a classifier as long as

the modification doesn’t change the action returned by each

classification operation. Consider Fig. 1(a) as an example. We

can merge R1 and R2 into R4. Though the rules have been

changed, the compressed classifier is still equivalent to the

original classifier; i.e. the compressed classifier can still report

the same action as the original classifier does. This property

actually embodies the principle of Boolean logic optimization.

2) First-Matching. When multiple rules match the same

packet, TCAM reports only the first matched rule. Fig. 1(b) and

(c) are two examples showing how to compress a classifier

using the first-matching property. In Fig. 1(b), because R2 is

completely covered by R1, any packet matching R2 will

definitely match R1 as well. So, R2 is a redundant rule.

Removing it will not affect the packet classification results. In

Fig. 1(c), R1, R2, and R3 cannot be directly merged. By adding

R0, we can merge all of them with R0 into a single rule R6. But

this would result in a non-equivalent classifier, because R0

forces the action of “0000” to be “Accept”, while it is “Deny”

in the original classifier. To make the classifiers equivalent, we

add R5 above R0. Because of the first-matching property, R0

will be blocked by R5, keeping the classifiers equivalent.

R1: 00** Accept

R2: 01** Accept

R3: **** Deny

Original Classifier

R4: 0*** Accept

R3: **** Deny

Compressed Classifier

(a) Action Oriented

R1: 00** Deny

R2: 000* Accept

R3: 1*** Accept

Original Classifier

R4: 00** Deny

R3: 1*** Accept

Compressed Classifier
(b) First Matching-1

R1: 0001 Accept

R2: 001* Accept

R3: 01** Accept

Original Classifier

R5: 0000 Deny

R4: **** Deny

Compressed Classifier

(c) First Matching-2

R4: **** Deny

R1: 0001 Accept

R2: 001* Accept

R3: 01** Accept

Variant Classifier

R4: **** Deny

R5: 0000 Deny

R0: 0000 Accept

R6: 0*** Accept

Fig. 1. Scenarios of the two properties for prefix compression. (a) Action

Oriented. (b) First Matching -1. (c) First Matching -2.

These two properties have been used in both range-field

optimization and all-field optimization. In the category of

range-field optimization, [5] first expands a range to

binary-reflected gray codes and then optimizes the codes. The

second step of [5] is actually a case of logic optimization.

[9][25] propose optimal solutions of range expansion and also

embody the idea of logic optimization and the first-matching

property. In the category of all-field optimization, Dong et al. in

[12] proposed four simple heuristic algorithms to find

equivalent classifiers consuming fewer TCAM entries. Dong’s

algorithms are also special cases of logic optimization and the

first-matching property. Liu et al. in [13] propose an algorithm

called TCAM Razor, which uses Firewall Decision Diagram

(FDD) to convert a multi-field rule to multiple one-field rules

in a hierarchy. Because TCAM Razor can guarantee that a

range in one field expands to the optimal number of prefixes

based on the first-matching property, it achieves a better

compression than [12] does.

While [5][9][25] considers only range fields, [12][13]

consider all fields in a classifier. However, [12][13] work on

each field individually and do not explore the compression

across different fields. Bit Weaving in [24] is the first all-field

optimization scheme attempting to break the boundaries of

fields. It can find and merge two rules with one bit different, no

matter in which field the bit is located. Another significant

3

cross-field solution is proposed in [14] by McGeer et al. In that

solution, the classifier compression problem is a special logic

optimization problem with 104 variables, where each rule in the

classifier is a product of several variables in Boolean

representation (or say, a block in Boolean Space). Therefore,

the existing logic optimization techniques can be applied to

compress classifiers by using the action-oriented property.

Moreover, with the first-matching property of TCAM, the

compression can be even better [14].

Fig. 2 is an example of McGeer’s scheme [14], which

consists of three steps. In the first step, the original classifier

(with six rules) is mapped into the Boolean Space shown in the

Karnaugh Table [16]. Each rule corresponds to a block (or a

point) in the table. During the mapping, the overlapping portion

of rules is associated with the action of the highest-priority rule.

For example, the point in the upper-left corner (i.e.,

“0000(WXYZ)”), which is covered by both the first and the last

rules, is assigned with the action of the first rule. In the second

step, classical logic optimization algorithms are applied in the

Karnaugh Table to merge the neighboring points with the same

action to reduce the number of rules (i.e. to merge “Accept”

points and get Classifier 1 in the example). In the third step, the

first-matching property is applied to Classifier 1. This

application is similar to the example in Fig. 1 (c), and as a result,

we can get an even smaller classifier that has only three rules

(Classifier 2). Please note that all three classifiers in the

example are semantically equivalent since they correspond to

the same Karnaugh Table.

A

00 01 11 10

00

01

11

10

WX

YZ

D D D

A A D D

A A D D

A A D D

Karnaugh Table

A: Accept D: Deny

Original Classifier

000* Accept

0101 Accept

011* Accept

001* Accept

**** Deny

WXYZ

00** Accept

0**1 Accept

0*1* Accept

**** Deny

0100 Deny

0*** Accept

**** Deny

Logic

Optim

First

Match

WA  YWZWXWA 

ZYXWD 

Classifier 1Classifier 2

*100 Deny

Fig. 2. An example of the scheme proposed by McGeer [14]

McGeer’s scheme [14] is indeed representative of previous

schemes. First, it is a pure bit-level solution that breaks the

boundaries of fields and exploits compression opportunities in

every bit of a classifier. Logic optimization at the bit-level is, by

nature, better than that limited to a field. Second, it takes

advantage of the first-matching property. However, the

performance of this scheme greatly depends on the rule

distribution of a classifier (i.e., the distributions of rules with

action “Accept” or “Deny” in the Boolean Space).

In Fig. 3, we show two classifiers in different rule

distributions. In Fig. 3 (a), rule elements associated with the

same action are densely populated (here, a rule element is the

smallest unit, i.e., a point in the Boolean Space associated with

an action), while in Fig. 3 (b), rule elements are spread sparsely

in the Boolean Space. Obviously, logic optimization and the

first-matching property are very suitable for handling the

densely populated rule distribution in Fig. 3 (a). In contrast,

logic optimization and the first-matching property perform

badly under the rule distribution in Fig. 3 (b). This is because

rule elements in Fig. 3 (b) are spread sparsely and no any two

neighboring rule elements have the same action; thus, no two

elements can be directly merged using logic optimization.

Therefore, under such circumstances, logic optimization cannot

contribute much compression. Neither can the first-matching

property. Because, for example, to reduce the number of

“Accept” rules using the first-matching property, we have to

create and put many “Deny” rules in the high-priority places

(similar to what we have done in Fig. 1 (c)). This case would

result in an even larger classifier.

A

00 01 11 10

00

01

11

10

WX

YZ

A

A

A

A

A

A

D D D

D D

D D

D D

D

00 01 11 10

00

01

11

10

WX

YZ

A

D

D

A

A

D

A D A

A D

D A

A D

(a) Dense (b) Sparse

0001 Accept

0010 Accept

0100 Accept

**** Deny

0111 Accept

1101 Accept

1110 Accept

1000 Accept

1011 Accept

0000 Accept

0001 Accept

0011 Accept

**** Deny

0010 Accept

0101 Accept

0111 Accept

0110 Accept

WXYZ WXYZ

Fig. 3. Typical Rule Distributions (a) Dense (b) Sparse

The above observation motivates us to develop the BP

technique to compress classifiers in sparse rule distributions

like the one shown in Fig. 3 (b). BP first converts sparse rule

distributions to dense rule distributions by swapping blocks (or

points), and then applies the logic optimization to merge rule

elements that cannot be merged originally. This technique is a

good complement for previous schemes.

Similar to McGeer’s scheme [14], the BP technique is also a

bit-level solution, except that BP swaps blocks (or points) to

generate a nonequivalent classifier and thus needs

preprocessing on incoming packets. Bit Weaving [24] also

swaps bits of rules in a classifier. But its purpose is not to

change rule distribution and the finial output is still an

equivalent classifier, which is fundamentally different from BP.

Layered Interval Coding in [6] also needs preprocessing on

incoming packets. But it is not based on logic optimization and

the first-matching property, and requires extra bits in each

TCAM entry. Its working conditions are different from BP’s.

In the rest of the paper, we will present the details of the BP

technique. For convenience, all the classifiers in the examples

consist of several “Accept” rules followed by a “Deny” rule as

the default rule. For simplicity, all rules consist of only 4 bits,

which are denoted by W, X, Y, and Z, respectively. We always

assume that the default order of bits is WXYZ. So, denotation

like Point “0000(WXYZ)” will be simplified to “0000”.

III. A WARM-UP EXAMPLE OF BP

We use a simple example in Fig. 4 to demonstrate the main

idea of BP. In the example, the Original Classifier will be

compressed by applying two simple permutations to convert

the classifier’s rule distribution from sparse to dense.

4

D

00 01 11 10

00

01

11

10

WX

YZ

A

D

D

A

D

D

D D D

A D

D D

A D

D

00 01 11 10

00

01

11

10

WX

YZ

A

D

A

A

D

A

D D D

D D

D D

D D

D

00 01 11 10

00

01

11

10

WX

YZ

D

A

D

A

A

A

D D D

D D

D D

D D

Swap Columns

11 and 01

Swap Rows

01 and 11

R6: 0*01 Accept

Set Up

Query
Packet Headers 1101

(WXYZ)
0110

0101

1110

0111

1110

Accept

Deny

Original Classifier

Permutation 1

Permutation 2

Classifier 1 Classifier 2

Compare

WXYZ

Original Table Table 1 Table 2

WXYZ

WXYZ

R2: 0001 Accept

R3: 0010 Accept

R4: 1110 Accept

R5: **** Deny

R1: 1101 Accept

R7: 0*10 Accept

R5: **** Deny

R8: 0*1* Accept

R5: **** Deny

(11**<>01**)

(**01<>**11)

Assistant Blocks
Target Blocks

Permutation 1

(11**<>01**)

Permutation 2

(**01<>**11)

Fig. 4. An example of the BP technique

Preprocessing Compressed

Classifier

(TCAM)

Packets Actions

(FPGA)

Fig. 5. The architecture of BP implementation

The two permutations in Fig. 4 are denoted as “11**<>01**”

and “**01<>**11” in order. The first permutation

“11**<>01**” is to swap Columns “11” and “01” in the

Original Table. In this permutation, counterpart points in the

two columns exchange their positions. For example, “0100”

exchanges with “0111”. As a result, we get Table 1. In the

second permutation “**01<>**11”, we swap Rows “01” and

“11” in Table 1 and get Table 2. Then by applying logic

optimization in Table 2, the original five rules are merged into

two rules. Finally, we get a compressed classifier that will be

stored in a TCAM as Fig. 5 shows.

When a packet comes for query, correspondingly, we need to

apply the same permutations to the header of the packet, which

is the preprocessing step as shown in Fig. 5. In the first

permutation, if the WX bits of the packet header are “11” (or

“01”), we change them to “01” (or “11”); otherwise, we keep

the WX bits unchanged. In the second permutation, similar

processing is done on YZ bits. Obviously, by using the

preprocessed packet headers to look up Classifier 2, we get the

same actions as those we get when using the original packet

headers to search the Original Classifier.

For the practicality of this BP scheme, we need to consider

the following issues:

1) Compression Performance. In L-dimensional Boolean

Space, the best compression that BP can do is to move all

“Accept” points (or blocks) together and merge them into a

block, which can be represented by a range. According to

[9][25], that range expands to at least L entries. If there are

more “Accept” points than “Deny” points, we can turn to move

“Deny” points, then the number can be as low as ⌈(𝐿 + 1) 2⁄ ⌉.

2) Overhead. While BP can reduce the TCAM size, the

preprocessing does introduce overhead. But the overhead can

be much smaller than that the TCAM resource saved.

Let’s use Permutation 2 in Fig. 4 (i.e., “**01<>**11”) as an

example that can save one TCAM entry, to explain how to

compute the overhead. Suppose that before the permutation, the

packet header has four bits, which are 𝑊(1), 𝑋(1), 𝑌(1) , and

𝑍(1). After that, the four bits are converted to 𝑊(2), 𝑋(2), 𝑌(2),

and 𝑍(2). Traditionally, we can construct Boolean equations to

represent this permutation. Then by simplifying those

equations, we can tell the overhead of circuit implementation.

Mathematically, this is a Multi-Output Logic Optimization

Problem [17].

0

00 01 11 10

00

01

11

10

0

0

0

0

0

0

0 1 1

1 1

1 1

1 1

W
(2)W

(1)
X

(1)

Y
(1)

Z
(1)

0

00 01 11 10

00

01

11

10

0

0

1

0

1

1

1 1 0

1 0

1 0

1 0

X
(2)W

(1)
X

(1)

Y
(1)

Z
(1)

0

00 01 11 10

00

01

11

10

1

0

1

1

0

1

0 0 0

1 1

0 0

1 1

Y
(2)W

(1)
X

(1)

Y
(1)

Z
(1)

0

00 01 11 10

00

01

11

10

1

1

1

0

1

0

0 0 0

1 1

1 1

0 0

Z
(2)W

(1)
X

(1)

Y
(1)

Z
(1)

W
(2)

=W
(1)

X
(2)

=X
(1)

Z
(2)

=Z
(1)

Y
(2)

=Y
(1)

Z
(1)

+Y
(1)

Z
(1)

Fig. 6. Computing overhead by applying logic optimization

To solve this problem, as shown in Fig. 6, we draw Karnaugh

Tables (one table to represent the conversion of one bit), and

then do logic optimization in each table, finally arriving at the

simplified Boolean equations that are listed beneath each table.

5

From those equations, we can see that Permutation 2 only

changes the value of 𝑌 bit, requiring one XOR gate to

implement. Thus, the total overhead of Permutation 2 is only

one XOR gate (equal to 6 transistors [18]), while it can save one

TCAM entry. In packet classification, one TCAM entry has 104

bits (though only 4 bits in this example). According to [19], one

TCAM bit requires 20 transistors. It is easy to calculate that the

overhead is much smaller than the resource saved. Actually,

even if without TCAM, BP is still worth doing. For example, if

directly synthesizing classifiers in Fig. 4, the Original Classifier

needs four L-input gates while Classifier 2 needs only one

(L-2)-input gate (L=104) and overhead is only two XOR gates.

3) Processing Speed. The system throughput is decided by

the slower of preprocessing and TCAM searching. To ensure

high performance, the preprocessing needs to be implemented

by hardware.

4) Programmability. Because the classifier may require

updates from time to time, programmability is another concern

in the BP technique. Both FPGA and RAM memory can

provide programmability for the preprocessing. But

considering the requirement of processing speed and the

complexity of storing a series of permutations into a memory,

we suggest using FPGA.

5) Power. Because one typical reason for TCAM

optimization is to reduce power consumption, we should

guarantee that BP can save power. Due to its architectures, an

SRAM-based FPGA is generally more power efficient than a

TCAM with the same gate count. After applying BP, if the total

gate count of FPGA and TCAM is smaller than the original gate

count of TCAM, we can think power is saved. So to simplify

the analysis, we consider only circuit size in the paper.

IV. BP PROBLEM AND COMPLEXITY

We now formally define the block permutation problem as

the following optimization problem.

BP Optimization Problem: For a given classifier 𝐶1, suppose

that P is the set of all possible series of permutations; find a

series of permutations 𝑃1 (𝑃1 ∈ 𝑃) to map 𝐶1 to 𝐶2, such that

|𝑃1| + |𝐶2| is minimized; i.e.,

𝑎𝑟𝑔𝑚𝑖𝑛
𝑃1∈𝑃

(|𝑃1| + |𝐶2|),

where |𝑃1| is the FPGA size required by 𝑃1 , and |𝐶2| is the

TCAM size required by 𝐶2 . (We compare FPGA size and

TCAM size on the basis of equivalent gate count; please refer to

Section IX for the formulas.)

As we mentioned in the previous section, the computation of

|𝑃1| involves logic optimization, but the computation of |𝐶1| is

very straightforward. If a given classifier 𝐶1 contains N M-bit

rules, then |𝐶1| = 𝑁𝑀 TCAM bits. It is easy to see that

𝑎𝑟𝑔𝑚𝑖𝑛
𝑃1∈𝑃

(|𝑃1| + |𝐶2|) ≤ |𝐶1|.

This is because the classifier will not be changed if we don’t do

any permutation. In this case, 𝑃1 = ∅, 𝐶2 = 𝐶1, |𝑃1| + |𝐶2| =
|𝐶1|. Thus, this optimization problem is equivalent to a series of

decision problems as follows:

BP Decision Problem: For a given classifier 𝐶1 , suppose

that P is the set of all possible series of permutations; check if

there exists a series of permutations 𝑃1 (𝑃1 ∈ 𝑃) to map 𝐶1 to

𝐶2 , such that |𝑃1| + |𝐶2| = 𝑘 (𝑘 = 1,⋯ , |𝐶1|) , where |𝑃1| is

the FPGA size required by 𝑃1, and |𝐶1| and |𝐶2| are the TCAM

sizes required by 𝐶1 and 𝐶2, respectively.

By trying k from 1 to |𝐶1| to solve the decision problems, by

no more than |𝐶1| times, we can solve the optimization problem.

However, each of these decision problems is very “hard” to

solve. Even for a given series of permutations P, we cannot

“quickly” verify the decision problem in “Polynomial-time”,

because the computation of |𝑃| requires logic optimization,

which is known to be an NP-hard problem [20]. The

complexity of logic optimization grows quickly as the number

of dimensions grows. For example, Quine-McClusky algorithm

[21] is a classic optimal solution for the logic optimization

problem, but its run-time complexity is too high to support a

large problem space.

To find the optimal solution for the BP problem, one possible

way is brute-force. Such a solution, however, is unrealistic. Let

us think about a brute-force method. As we know, block

permutations only change rule distribution and don’t add or

delete any rule elements. No matter how many permutations we

execute, the only difference between 𝐶1 and 𝐶2 is the positions

of rule elements, so we can draw a mapping table to record the

location changes of all rule elements. Actually, a mapping table

represents a series of special permutations, in which each

permutation only swaps two rule elements. By trying all

possible mapping tables, we can get the optimal solution. If the

number of dimensions is 𝐿 (i.e., each rule has 𝐿 bits), then the

number of rule elements is 2𝐿. According to the mathematical

theory of Permutations and Combinations, the number of

mapping tables can be up to (1 ∗ 2 ∗ ⋯∗ 2𝐿) = (2𝐿)! . In

packet classification, 𝐿 = 104. We can see then that the search

space is prohibitively huge. So brute-force is impractical.

Therefore, in this paper we develop a heuristic algorithm to

efficiently search approximation solutions.

V. COMPRESSING CLASSIFIERS

A. Terms and Concepts

Before introducing the heuristic BP algorithm, we first

define several terms and concepts below:

1) Block Size: The size of a block is defined as the number

of points that are contained in the block. To simplify the

description, in this paper we use the number of wildcards in the

Boolean representation to denote the size of a block. For

example, we say the size of the block “0*1*” in Table 2 of Fig.

4 is 2 wildcards.

2) Distance: The distance of two blocks is the Hamming

distance of their Boolean representations. To get the distance,

we can count the number of bits in which two Boolean

representations have different non-wildcard values. For

example, the distance between “0001” and “1101” is 2; the

distance between “0*01” and “01*1” is 0.

 6

3) Direction: Direction indicates how a block spans

different dimensions in Boolean Space. We can judge the

direction of a block by the positions of the wildcards in the

Boolean representation. If two blocks have wildcards appearing

exactly in the same bits of their Boolean representations, we say

these two blocks are in the same direction. For example, “0*01”

and “0*10” are in the same direction, while “0*01” and “*010”

are not. Any two points that have no wildcard in their Boolean

representations are considered in the same direction.

TABLE II

CONDITIONS OF MERGING AND PERMUTING TWO BLOCKS

Merging
Permutation

(2) Same block size

(1) Block distance = 1 (1) Block distance >= 2

(4) Same action (4) Same action

(2) Same block size

(3) Same direction (3) Same direction

Target Blocks Assistant Blocks

(1) Block distance >= 1

(2) Same block size

(3) Same direction

(4) Cover one and only

 one target block

4) Merging: In Boolean Space, if two blocks meet the

condition of “Merging” in Table II, we can directly merge them

into one block. This operation is called Merging. Please note

that “Same action” in Table II means all points in the related

two blocks are associated with the same action.

5) Permutation, Target Blocks, and Assistant Blocks: A

Permutation is specified by a pair of Target Blocks and a pair of

Assistant Blocks. The operation of a permutation consists of

two steps: swapping the assistant blocks, and then merging the

target blocks. A pair of target blocks and its corresponding pair

of assistant blocks should satisfy the conditions of “Target

Blocks” and “Assistant Blocks” in Table II, respectively.

According to the conditions, there should be one target block

covered by one of the two assistant blocks and moved during

the swapping, while the other target block remains fixed. This

operation of swapping assistant blocks can reduce the distance

between two target blocks to one, so that they can be merged.

Consider Table 1 of Fig. 4 as an example. We swap assistant

blocks “**01” and “**11” to merge target blocks “0*01” and

“0*10” (please note that “0*01” is covered by “**01”).

Normally, to merge two target blocks, there might be more than

one valid assistant block pair as options. For example, for target

blocks “0*01” and “0*10” in Table 1 of Fig. 4, there is another

valid assistant block pair “**10” and “**11”. Please note that

the size of assistant blocks determines the overhead.

B. Properties

Before presenting the heuristic BP algorithm, we first

introduce a series of properties of assistant blocks to narrow

down the search space to reduce the computation complexity.

Property 1: If there are multiple pairs of candidate assistant

blocks for a given pair of target blocks, to minimize the

permutation overhead we should choose the largest assistant

blocks to swap.

It is important to point out that swapping small blocks causes

more overhead than swapping big blocks, because small blocks

have fewer wildcards in the Boolean representations, hence

involving more non-wildcard bits into the permutations. For

example, in Permutation 2 of Fig. 4, as we explained in Section

III, we choose “**01” and “**11” as a pair of assistant blocks.

As a result, the overhead is one XOR gate. But if we choose

another pair of smaller assistant blocks, such as “0*01” and

“0*11”, we need one OR gate and two AND gates in addition to

one XOR gate. Thus, to reduce the overhead, we should choose

large blocks to swap when doing the permutation operations.

Here, we continue to introduce the following property that

discloses the relation between assistant block size, target block

size, and the distance of two target blocks. This property is very

useful for reducing the computation complexity.

Property 2: Assuming that the size of an assistant block is 𝑊𝑝

wildcards, the size of its corresponding target block is 𝑊𝑡

wildcards, the distance between the two target blocks is 𝐷, and

the dimension of Boolean Space is 𝐿 (i.e., each rule contains 𝐿

bits), there exists the following relationship:

𝑊𝑡 ≤ 𝑊𝑝 ≤ (𝐿 − 𝐷)

We explain Property 2 using Lemmas 1-3 as follows:

Lemma 1: 𝑊𝑝 ≥ 𝑊𝑡 .

Proof: Lemma 1 discloses the lower bound of assistant block

size. According to Table II, there must be an assistant block

fully covering a target block, because we need the former one to

carry the latter one in the permutation to reduce the distance

between the pair of two target blocks. For example, in Table 1

of Fig. 4, the assistant block “**01” covers the target block

“0*01”, so the size of the assistant block cannot be less than the

size of the target block. ■
Before introducing Lemmas 2 and 3, let us use Fig. 7 to

illustrate how to find a pair of assistant blocks for a given pair

of target blocks by deducing the Boolean representations.

Suppose that there is a pair of target blocks Target Block 1 and

Target Block 2. Without loss of generality, we assume that

these two target blocks have wildcards in the bits 𝑊1, ⋯ ,𝑊𝑀,

the same values in the bits 𝑋1, ⋯ , 𝑋𝑁, and different values in

the bits 𝑌1, ⋯ , 𝑌𝐷 . According to the definition in Section V,

their distance is 𝐷, and there should be one target block covered

by one assistant block. Let us assume that it is Target Block 1

covered by Assistant Block 1. Then, Assistant Block 1 should

have the same values as Target Block 1 in 𝑌1, ⋯ , 𝑌𝐷 (we will

prove later in Lemma 2 that these bits cannot be wildcards).

The other bits of Assistant Block 1 can be wildcards or the same

values as Target Block 1. In the figure, they are all filled with

wildcards. The next step is to deduce Assistant Block 2, the one

to be swapped with Assistant Block 1. To merge the two target

blocks, we need to reduce their distance to one, which requires

the two assistant blocks to have same value in one bit among

𝑌1, ⋯ , 𝑌𝐷 and different values in the remaining (𝐷 − 1) bits. In

this figure, we assume that the two assistant blocks are the same

in 𝑌𝐷. Finally, we get a pair of assistant blocks.

Lemma 2: For a given pair of target blocks, if they have D

different non-wildcard bits in the Boolean representations, then

none of these D bits of their assistant blocks can be a wildcard.

Proof: This lemma is needed to prove Lemma 3. We prove it

by contradiction, using the example in Fig. 7. If a wildcard

appears in any bit of 𝑌1, ⋯ , 𝑌𝐷−1 of the assistant blocks, e.g., 𝑌1

of Assistant Block 1(a) and Assistant Block 2(a), then 𝑌1 of

7

Target Block 1 will keep unchanged and this target block will

be transformed to Block 1(a). Because the distance of Block 1(a)

and Target Block 2 is not 1, we cannot directly merge them. If

there is a wildcard in 𝑌𝐷, as shown in Assistant Block 1(b) and

Assistant Block 2(b), then Target Block 1 and Target Block 2

will both be moved and turned to Block 1(b) and Block 2(b),

respectively. Obviously, Block 1(b) and Block 2(b) cannot be

directly merged. So far, we have proved Lemma 2. ■

Bit Positions

Target Block 1

Target Block 2

Assistant Block 1

Assistant Block 2

 Block 1(a)

Assistant Block 1(a)

Assistant Block 2(a)

Block 1(b)

Block 2(b)

Assistant Block 1(b)

Assistant Block 2(b)

L=M+N+D

W1 ∙∙∙ WM X1 ∙∙∙ XN Y1 Y2 ∙∙∙ YD-1 YD

 * ∙∙∙ * 1 ∙∙∙ 1 1 1 ∙∙∙ 1 1

 * ∙∙∙ * 1 ∙∙∙ 1 0 0 ∙∙∙ 0 0

 * ∙∙∙ * * ∙∙∙ * 1 1 ∙∙∙ 1 1

 * ∙∙∙ * * ∙∙∙ * 0 0 ∙∙∙ 0 1

 * ∙∙∙ * 1 ∙∙∙ 1 1 0 ∙∙∙ 0 1

 * ∙∙∙ * * ∙∙∙ * * 1 ∙∙∙ 1 1

 * ∙∙∙ * * ∙∙∙ * * 0 ∙∙∙ 0 1

 * ∙∙∙ * 1 ∙∙∙ 1 0 0 ∙∙∙ 0 1

 * ∙∙∙ * 1 ∙∙∙ 1 1 1 ∙∙∙ 1 0

 * ∙∙∙ * * ∙∙∙ * 1 1 ∙∙∙ 1 *

 * ∙∙∙ * * ∙∙∙ * 0 0 ∙∙∙ 0 *

Fig. 7. Scenarios of deducing Boolean representations of assistant blocks

Lemma 3: 𝑊𝑝 ≤ (𝐿 − 𝐷).

Proof: Lemma 3 points out the upper bound of the assistant

block size. Again, we use the target blocks in Fig. 7 as an

example to prove this lemma. Based on Lemma 2, none of the

bits 𝑌1, ⋯ , 𝑌𝐷 of the assistant blocks can be a wildcard. So the

largest assistant blocks are those blocks whose 𝑊1, ⋯ ,𝑊𝑀 and

𝑋1, ⋯ , 𝑋𝑁 are all wildcards and 𝑌1, ⋯ , 𝑌𝐷 are all non-wildcards.

Thus we know that the maximum assistant block size is

(𝑀 + 𝑁) = (𝐿 − 𝐷) wildcards. ■

Property 3: In packet classification, it holds that:

0 ≤ 𝑊𝑝 ≤ (𝐿 − 2) = 102

Property 3 is an extension of Property 2. In packet

classification, L = 104 ; according to Table II, D ≥ 2 . So,

W𝑝 ≤ (𝐿 − 𝐷) ≤ (𝐿 − 2) = 102. In Boolean Space, a block

should contain at least one rule element. Therefore, we have

W𝑝 ≥ 𝑊𝑡 ≥ 0 wildcards.

C. BP Algorithm

In this section, we propose the heuristic BP algorithm to

compress classifiers. Our intention is to develop a practical

algorithm with reduced computational complexity to find an

approximation solution, by taking advantage of the

aforementioned properties and lemmas and some predefined

parameters. As shown in Fig. 8, the BP algorithm reads in a

classifier and then recursively finds and performs permutations;

after a predefined number of rounds have been completed, it

will output a compressed classifier. The overall process

consists of two phases: the direct logic optimization phase

(Line 15) and the permutation phase (Lines 16-32).

In the direct logic optimization phase, we directly apply logic

optimization on the original classifier to group adjacent rule

elements. This is to reduce the number of rules that will be

involved in the permutation phase and, hence, reduce the

computation complexity.

Fig. 8. Pseudo code of the BP classifier compression algorithm

In the permutation phase, we recursively find and perform

permutations on the classifier. We use the parameter 𝑁𝑟 to

control the number of iteration rounds. According to the

original idea of block permutation, we expect to find and

execute only one permutation in each round of iteration. After

the whole process is completed, we will have executed a series

of permutations. Because a permutation requires a pair of target

blocks and a pair of assistant blocks, the algorithm in each

round uses three steps to find target blocks (Line 19) and

assistant blocks (Lines 20-22), and then execute the

permutation found (Lines 23-26). According to Property 1, a

large assistant block leads to low overhead. So we always

choose the largest possible assistant blocks. In each round of

iteration, we start from the largest possible blocks, whose sizes

are decided by 𝑊𝑚𝑎𝑥 based on Property 3 (Line 10), to the

smallest allowed blocks, whose sizes are decided by a

predefined factor 𝑊𝑚𝑖𝑛. If we cannot find a permutation under

the current constraint of the assistant block size, we will try a

1. Function BP_CLASSIFIER_COMPRESS(𝐶0,𝑁𝑟,𝑊𝑚𝑖𝑛,𝑁𝑡𝑝)

2. Input:

3. Original classifier 𝐶0 in 𝐿-dimension Boolean Space;

4. Number of rounds 𝑁𝑟;

5. Minimum assistant block size 𝑊𝑚𝑖𝑛 (wildcards);

6. Maximum number of target block pairs to be

considered in each round 𝑁𝑡𝑝;

7. Output:

8. Compressed classifier 𝐶1;

9. Constant:

10. Maximum assistant block size 𝑊𝑚𝑎𝑥 = (𝐿 − 2);
11. Variable:

12. A set of target block pairs 𝑆𝑇1;

13. A pair of assistant blocks 𝐴1;

14. Begin

15. 𝐶1 = 𝐷𝐼𝑅𝐸𝐶𝑇_𝐿𝑂𝐺𝐼𝐶_𝑂𝑃𝑇𝐼𝑀(𝐶0);
16. 𝐟𝐨𝐫 𝑟𝑜𝑢𝑛𝑑 = 0 to (𝑁𝑟 − 1) 𝐝𝐨

17. 𝐟𝐨𝐫 𝑊𝑝 = 𝑊𝑚𝑎𝑥 to 𝑊𝑚𝑖𝑛 𝐝𝐨

18. 𝑆𝑇1 = ∅; 𝐴1 = ∅;

19. 𝑆𝑇1 = 𝐹𝐼𝑁𝐷_𝑇𝐴𝑅𝐺𝐸𝑇(𝐶1,𝑊𝑝, 𝑁𝑡𝑝);

20. 𝐢𝐟 𝑆𝑇1 ≠ ∅ 𝐭𝐡𝐞𝐧

21. 𝐴1 = 𝐹𝐼𝑁𝐷_𝐴𝑆𝑆𝐼𝑆𝑇𝐴𝑁𝑇(𝐶1,𝑊𝑝, 𝑆𝑇1);

22. end if

23. 𝐢𝐟 𝐴1 ≠ ∅ 𝐭𝐡𝐞𝐧

24. 𝐶1 = 𝐸𝑋𝐸𝐶𝑈𝑇𝐸_𝑃𝐸𝑅𝑀(𝐶1, 𝐴1);
25. break;

26. end if

27. end for

28. 𝐢𝐟 𝐴1 == ∅ then

29. return 𝐶1;

30. end if

31. end for

32. return 𝐶1;

33. End

 8

smaller size, until reaching 𝑊𝑚𝑖𝑛 . The algorithm terminates

when either of the following two conditions are met: (1) the

algorithm has run for 𝑁𝑟 rounds, or (2) the algorithm cannot

find a valid pair of assistant blocks to swap in the current round.

Next, we will explain the three functions that are called in each

round of the permutation phase.

1) FIND_TARGET

Fig. 9. Pseudo code of the FIND_TARGET function

The purpose of the FIND_TARGET function is to find out

all possible target block pairs based on the input parameters. As

shown in Fig. 9, this function examines all rule pairs to check (1)

if a rule pair meets the conditions of “Target Blocks” in Table II

(Lines 12-14); (2) if their sizes satisfy Property 2 (i.e., not

larger than 𝑊𝑝 as shown in Lines 15-17); (3) whether their

distance satisfies Property 2 (actually we need to do this only if

the distance is equal to (𝐿 −𝑊𝑝) as shown in Lines 18-20

based on Lemma 4 which will be explained soon). Only if a pair

of rules meets all these three constraints should we consider it

as a pair of target blocks. These constraints can largely reduce

the number of target block pairs that need to be considered in

each round of iteration, hence reducing the computational

complexity. We use the parameter 𝑁𝑡𝑝 to limit the number of

target block pairs. If there are too many target blocks found, we

report only the first 𝑁𝑡𝑝 pairs.

Lemma 4: In FIND_TARGET function, constraints 𝐷 =

(𝐿 −𝑊𝑝) and 𝐷 ≤ (𝐿 −𝑊𝑝) are equivalent in finding

permutations. To reduce the computation complexity, we can

consider only the target block pairs that satisfy 𝐷 = (𝐿 −𝑊𝑝).

Proof: According to Property 2, we have 𝑊𝑝 ≤ (𝐿 − 𝐷),

which can be rephrased as D ≤ (𝐿 −𝑊𝑝). Suppose that there

are two pairs of target blocks 𝑡𝑝𝑎𝑖𝑟1 and 𝑡𝑝𝑎𝑖𝑟2 in the current

input classifier 𝐶1 . Suppose the block distances in 𝑡𝑝𝑎𝑖𝑟1 and

𝑡𝑝𝑎𝑖𝑟2 are 𝐷1 and 𝐷2, respectively. Without loss of generality,

we assume 𝐷1 < 𝐷2 . Because we gradually decrease 𝑊𝑝 to

search target blocks, if we set the constraint as D = (𝐿 −𝑊𝑝),

we will report 𝑡𝑝𝑎𝑖𝑟1 when 𝑊𝑝 goes down to satisfy 𝑊𝑝 = (𝐿 −

𝐷1); if we set the constraint as D ≤ (𝐿 −𝑊𝑝), when 𝑊𝑝 = (𝐿 −

𝐷1), we have 𝑊𝑝 > (𝐿 − 𝐷2), which violates Lemma 2, so we

cannot report 𝑡𝑝𝑎𝑖𝑟2, only 𝑡𝑝𝑎𝑖𝑟1. If we can find assistant blocks

for 𝑡𝑝𝑎𝑖𝑟1 , we will execute a permutation and get a new

classifier to run next round. If we cannot find assistant blocks

for 𝑡𝑝𝑎𝑖𝑟1 , we will continue to decrease 𝑊𝑝 and eventually

report 𝑡𝑝𝑎𝑖𝑟2 , no matter if the constraint is D = (𝐿 −𝑊𝑝) or

D ≤ (𝐿 −𝑊𝑝). So far, whether the constraint is set to D ≤ (𝐿 −

𝑊𝑝) or D = (𝐿 −𝑊𝑝), we always get the same result. Hence,

Lemma 4 is proved. ■

2) FIND_ASSISTANT

If the target block set returned by the FIND_TARGET

function is not empty, the BP algorithm will continue to run the

FIND_ASSISTANT function to find the corresponding

assistant block pairs. As shown in Fig. 10, FIND_ASSISTANT

will find all possible assistant blocks whose size is equal to the

input parameter 𝑊𝑝 for each pair of target blocks (Lines 12-16).

Then it will evaluate the compression effect of each pair of

assistant blocks and choose only the one that can reduce the

most number of rules (Line 17).

Fig. 10. Pseudo code of the FIND_ASSISTANT function

The function of finding assistant blocks for a given pair of

target blocks is implemented in the SUB_FIND_ASSIST

sub-function (Line 14). Its main idea is to deduce the Boolean

representations of assistant blocks from the Boolean

representations of the given target blocks (this method has been

shown in the proof of Lemma 2). According to Lemma 5, we

1. Function FIND_TARGET(𝐶1, 𝑊𝑝, 𝑁𝑡𝑝)

2. Input:

3. A Classifier 𝐶1 with 𝑁1 rules in 𝐿-dimension Boolean

Space;

4. Expected assistant block size 𝑊𝑝 (wildcards);

5. Maximum number of target block pairs to be

considered in each round 𝑁𝑡𝑝;

6. Output:

7. A set of target block pairs 𝑆𝑇1;

8. Begin

9. 𝑆𝑇1 = ∅; M=0;

10. 𝐟𝐨𝐫 rule 𝑖 = 0 to (𝑁1 − 1) 𝐝𝐨

11. 𝐟𝐨𝐫 rule 𝑗 = i + 1 to (𝑁1 − 1) 𝐝𝐨

12. if Pair(𝑖, 𝑗) cannot be a pair of target blocks then

13. break;

14. end if

15. if the sizes of rule 𝑖 and j are larger than 𝑊𝑝 then

16. break;

17. end if

18. if the distance D(𝑖, 𝑗) ≠ (𝐿 −𝑊𝑝) then

19. break;

20. end if

21. 𝑆𝑇1 = 𝑆𝑇1 + Pair(𝑖, 𝑗); M=M+1;

22. if M == 𝑁𝑡𝑝 then

23. return 𝑆𝑇1;

24. end if

25. end for

26. end for
27. return 𝑆𝑇1;

28. End

1. Function FIND_ASSISTANT(𝐶1, 𝑊𝑝, 𝑆𝑇1)

2. Input:

3. A Classifier 𝐶1;

4. Expected assistant block size 𝑊𝑝 (wildcards);

5. A set of target block pairs 𝑆𝑇1;

6. Output:

7. A pair of assistant blocks 𝐴1;

8. Variable:

9. Sets of Assistant block pairs 𝑆𝐴1 and 𝑆𝐴2;

10. Begin

11. 𝑆𝐴1 = ∅;

12. 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 pair of target blocks 𝑡𝑝𝑎𝑖𝑟 ∈ 𝑆𝑇1 do

13. 𝑆𝐴2 = ∅;

14. 𝑆𝐴2 = SUB_FIND_ASSIST(𝐶1,𝑊𝑝, 𝑡𝑝𝑎𝑖𝑟) ;

15. 𝑆𝐴1 = 𝑆𝐴1 + 𝑆𝐴2;

16. end for

17. 𝐴1 = SUB_EVALUATE_ASSIST(𝑆𝐴1) ;
18. return 𝐴1;

19. End

9

can find 2 ∗ (𝐿 −𝑊𝑝) pairs of assistant blocks for a given

target block pair.

Lemma 5: In the SUB_FIND_ASSIST sub-function, we can

find exactly 2 ∗ (𝐿 −𝑊𝑝) pairs of assistant blocks for each

given target block pair.

Proof: Without loss of generality, we still use the examples

in Fig. 7 to prove this Lemma. When the distance of two target

blocks is 𝐷 bits, we need to inverse (D − 1) bits among

𝑌1, ⋯ , 𝑌𝐷 of one of the target blocks to shorten their distance to

1. There are 2𝐷 possible operations. A pair of assistant blocks

can be obtained in correspondence to each of the possible

inversing operations. According to Lemma 4, 𝐷 = (𝐿 −𝑊𝑝).

Therefore, we can find exactly 2𝐷 = 2 ∗ (𝐿 −𝑊𝑝) pairs of

assistant blocks. ■

R1: 0000 Accept

R2: 0011 Accept

R3: 11*0 Accept

Assistant Block Pairs Merge Split Delta

Classifier C

**11 <> **10 1 -12

**11 <> **01 1 0

**00 <> **01 1 -12

**00 <> **10 1 0

1

1

R4: **** Deny

Assistant block evaluation for target blocks R1 and R2

A1:

A2:

A3:

A4:

Fig. 11. Evaluating assistant blocks

The SUB_EVALUATE_ASSIST (Line 17) evaluates all the

assistant block pairs and chooses the “best” one. There are two

situations that we need to consider when swapping a pair of

assistant blocks in a permutation. First, swapping a pair of

assistant blocks may merge more than one pair of target blocks;

thus a permutation can reduce multiple rules. For example,

Permutation 1 in Fig. 4 can reduce two rules. Second, a

permutation may also break some existing blocks, leading to

more rules. Thus we define the following metric delta to

evaluate assistant blocks. We choose a pair of assistant blocks

only if its delta is a positive number.

𝑑𝑒𝑙𝑡𝑎 = # 𝑜𝑓 𝑟𝑢𝑙𝑒𝑠 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 − # 𝑜𝑓 𝑟𝑢𝑙𝑒𝑠 𝑐𝑟𝑒𝑎𝑡𝑒𝑑

The way to estimate the number of rules reduced for a given

pair of assistant blocks is by checking all possible rule pairs in

the current classifier to see if any of them can be a target block

pair of the given assistant blocks, based on the conditions in

Table II. To estimate the number of rules created, we scan all

the rules in the current classifier to see if any wildcard in their

Boolean representations would be affected by swapping the

given assistant blocks. Fig. 11 is an example of evaluating

assistant blocks. In this example, we list four pairs of assistant

blocks for the target block pair 𝑅1 and 𝑅2. All these assistant

blocks can merge 𝑅1 and 𝑅2, resulting in one rule reduced. But

among these assistant blocks, 𝐴1 and 𝐴3 will split 𝑅3 and

create two rules, while 𝐴2 and 𝐴4 will not. For example, 𝑅3 is

made up of “1110” and “1100”. If we choose 𝐴1 to swap, then

“1100” will be changed to “1101”, which cannot be merged

with “1110”, resulting in two new blocks while 𝑅3 disappears.

Therefore, we choose 𝐴2 or 𝐴4.

3) EXECUTE_PERM

The function of EXECUTE_PERM (Line 24 in Fig. 8) is the

last step of each round of the BP algorithm. This function will

be called to execute a permutation if the previous step can

return a pair of assistant blocks. To execute a permutation, the

BP algorithm will first scan the current classifier to change the

Boolean representations of the rules affected by swapping

assistant blocks; second, it will compare rules; if any pair of

rules meets the condition of “Merging” in Table II, then the

algorithm will merge them into one rule.

Fig. 12 gives the details of how the BP algorithm works on

the example in Fig. 4. In this example, the dimension of

Boolean Space 𝐿 is 4. Based on Property 3, we try assistant

block size 𝑊𝑝 from 2 wildcards to 0 wildcards in each round.

The process is completed in two rounds. In the first round,

when 𝑊𝑝 = 2, we find four pairs of target blocks and sixteen

pairs of assistant blocks (only four pairs of assistant blocks

associated with the first target block pair are shown in the figure

due to the limited space). These four assistant block pairs can

provide the same delta. Among them, we randomly select one

pair, say "11 ∗∗<> 01 ∗∗ ", to execute the permutation and get

the compressed Classifier 1. In the second round, when 𝑊𝑝 = 2,

we find only one pair of target blocks and four pairs of assistant

blocks. Because all the four pairs of assistant blocks contribute

to the same delta, we simply perform " ∗∗ 01 <>∗∗ 11" and

then get Classifier 2, which is the final result.

D. Complexity

As we analyzed in Section IV, the Block Permutation

problem is NP-hard and cannot be solved in polynomial time.

The proposed BP algorithm can provide sub-optimal

compression results with a relatively low run-time complexity.

On one hand, the BP algorithm can provide sub-optimal

results because (1) it searches assistant blocks starting from the

largest possible size 𝑊𝑚𝑎𝑥 = (𝐿 − 2) to make sure the

permutation overhead is as low as possible; (2) it puts a cap on

the minimum assistant block size 𝑊𝑚𝑖𝑛 so that the overhead

involved in each permutation can be upper bounded; (3) we

define a metric called delta to make sure that each permutation

can actually reduce the number of rules.

On the other hand, we limit the run-time complexity of the

BP algorithm in three ways: (1) unlike brute-force, which does

not consider rule distribution, the BP algorithm is sensitive to

rule distribution. If the rule distribution is dense, a case in

which it is unnecessary to apply the BP technique, the BP

compression process will finish quickly; (2) we use a series of

properties and lemmas to reduce the computation; (3) we also

provide a method to manually control the run-time complexity

by introducing the parameters of 𝑁𝑟 and 𝑁𝑡𝑝.

Now, let us estimate the worst case run-time complexity of

the BP algorithm. Suppose that the classifier (after the direct

logic optimization phase) contains 𝑁 ternary string rules.

The worst case run-time of the BP algorithm in Fig. 8 is:

𝑇𝐵𝑃 = ∑ [(𝑊𝑚𝑎𝑥 −𝑊𝑚𝑖𝑛 + 1)(𝑇1(𝑖) + 𝑇2(𝑖)) + 𝑇3(𝑖)]

𝑁𝑟−1

𝑖=0

 < ∑ [𝐿(𝑇1(𝑖) + 𝑇2(𝑖)) + 𝑇3(𝑖)]
𝑁𝑟−1
𝑖=0

Where, 𝐿 is constant; 𝑇1(𝑖) , 𝑇2(𝑖) , and 𝑇3(𝑖) is the worst

case run-times of FIND_TARGET, FIND_ASSISTANT, and

EXECUTE_PERM in the 𝑖𝑡ℎ round, respectively. Please note

10

R2: 0001 Accept

R3: 0010 Accept

R4: 1110 Accept

R5: **** Deny

R1: 1101 Accept

Original Classifier

R1 and R2

Target Blocks

R1 and R4

R2 and R3

R3 and R4

11** <> 01**

11** <> 10**

Assistant Blocks

00** <> 10**

00** <> 01**

Only show the assistant

blocks for R1 and R2

Round 1

R7: 0*10 Accept

R5: **** Deny

R6: 0*01 Accept

Classifier 1

R6 and R7

Target Blocks

**01 <> **11

**01 <> **00

Assistant Blocks

**10 <> **00

**10 <> **11

Round 2

R5: **** Deny

R8: 0*1* Accept

Classifier 2

Fig. 12. A complete example of applying the BP algorithm

that EXECUTE_PERM is called only once because only one

permutation is executed in each round.

In the worst case, each round can reduce only one rule, so in

the 𝑖𝑡ℎ round, the number of rules is 𝑁1(𝑖) = 𝑁 − 𝑖 ; the

number of rule pairs is 𝑁2(𝑖) = 𝑁1(𝑖)[𝑁1(𝑖) + 1]/2. Because

𝐿 is constant, the run-time complexity of checking the Boolean

representation of a rule can be considered a constant value. So,

the worst case run-time of FIND_TARGET is:

𝑇1(𝑖) = O(𝑁2(𝑖))

For FIND_ASSISTANT, based on Lemma 5, the maximum

number of assistant block pairs found is 𝑁3(𝑖) =

2(𝐿 −𝑊𝑝)𝑁𝑡𝑝 < 2𝐿𝑁𝑡𝑝. From the proof of Lemma 5, we can

also know that the run-time of Lines 12-16 in Fig. 10 is

𝑇21(𝑖) < 2𝐿𝑁𝑡𝑝; and for SUB_EVALUATE_ASSIST in Line

17, its run-time 𝑇22(𝑖) = 𝑂(𝑁2(𝑖))𝑁3(i) + O(𝑁1(𝑖))𝑁3(𝑖) . So,

the worst case run-time complexity of FIND_ASSISTANT is:

𝑇2(𝑖) = 𝑇21(𝑖) + 𝑇22(𝑖) < (𝑂(𝑁1(i) + 𝑁2(i)) + 1)2𝐿𝑁𝑡𝑝

The worst case run-time of EXECUTE_PERM is:

𝑇3(𝑖) = O(𝑁1(𝑖)) + 𝑂(𝑁2(𝑖)) = 𝑂(𝑁1(i) + 𝑁2(i))

Based on all the analyses, we can finally deduce that the

worst case run-time of BP algorithm is

𝑇𝐵𝑃 = O(𝑁𝑟𝑁𝑡𝑝𝑁
2)

This means that once the 𝑁𝑟 and 𝑁𝑡𝑝 have been decided, the

worst case run-time complexity of BP algorithm is 𝑂(𝑁2).
Though the complexity has been reduced to “polynomial-time”,

in some cases the run-time may be still too long due to the large

coefficients, especially when 𝐿 = 104 . One strategy is to

reduce parameters like 𝑁𝑟 and 𝑁𝑡𝑝, but this may sacrifice the

compression performance. So, a good tradeoff between

run-time and compression is needed in real applications. When

N becomes larger, because of the large coefficients, the

rum-time may still grow quickly. For large classifiers, we can

consider a method called Classifier Partitioning to reduce the

run-time complexity by partitioning a large classifier into

several small parts and then applying BP to each part. Based on

Cauchy's Inequality, our preliminary suggestion is to partition

the classifier as evenly as possible to get the minimum total

run-time of all sets. After partitioning, while run-time is

reduced, we can get a better compression. This is because if we

keep the same 𝑁𝑡𝑝 on the original classifier for all parts, in each

round, we can actually consider more target block pairs in total.

We do not suggest partitioning a classifier to very small parts,

because this would lessen the chance of finding target blocks.

The parts can be processed in parallel to further save time.

VI. IMPLEMENTING PERMUTATIONS

As we have explained, when the classifier is compressed by a

series of permutations, correspondingly we need to apply the

same permutations to the incoming packet headers. Circuit size

and throughput performance are the two major performance

metrics we have to consider when implementing the

permutations. In this section, we first introduce the basic

methodology of designing the permutation logic circuit without

considering throughput performance, and then propose a

scheme called stage-grouping to achieve a tradeoff between

circuit size and throughput.

A. Basic Methodology

If not considering performance, we can design an optimized

circuit (i.e., with minimal size), by deducing and simplifying

the final Boolean equations for a series of permutations.

11**<>01**

Permutation (1)

01<>11

Permutation (2) Final Equation

Substitute (1) into (2)

Fig. 13. Boolean equations of the two permutations in Fig. 4

Fig. 13 provides the Boolean equations of the two

permutations used in Fig. 4. We can see that each equation in a

permutation can always be implemented by one XOR gate.

Given a packet header, we can calculate the transformed values

of W, X, Y, and Z bits by using the two equations in series. We

can also substitute the equations of Permutation (1) into those

of Permutation (2) to get a single set of final equations, with

which we can directly calculate the transformed value of the

packet header. For a general case, there is a method to easily

deduce the final equations. Let us suppose that in a permutation,

we swap two assistant blocks that have same values in bit

positions 𝑋1, ⋯ , 𝑋𝑚 , have different values in bit positions

𝑌1, ⋯ , 𝑌𝑛, and have wildcards in other bit positions. And we

denote their Boolean representations as"𝑎1⋯𝑎𝑚𝑏1⋯𝑏𝑛 ∗ ⋯∗

" and "𝑎1⋯𝑎𝑚𝑏1̅⋯𝑏𝑛̅̅ ̅ ∗ ⋯ ∗ " ("𝑏̅" is the inverse of "𝑏"). In

the permutation, only the 𝑌1, ⋯ , 𝑌𝑛 bits of the incoming packet

header will be changed. Assuming that the value of the

𝑋1, ⋯ , 𝑋𝑚, 𝑌1, ⋯ , 𝑌𝑛 bits of the incoming packet header is

𝑐1, ⋯ , 𝑐𝑚, 𝑑1, ⋯ , 𝑑𝑛 respectively, and after the permutation,

their 𝑌1, ⋯ , 𝑌𝑛 bits will be changed to 𝑑1
′ , ⋯ , 𝑑𝑛

′ , respectively,

we use the following Boolean equations to calculate the new

values of 𝑌1, ⋯ , 𝑌𝑛 bits.

11

{

 𝑑1
′ = 𝑑1 ∙ 𝐹 + 𝑑1 ∙ 𝐹

⋮
⋮

 𝑑𝑛
′ = 𝑑𝑛 ∙ 𝐹 + 𝑑𝑛 ∙ 𝐹

Where, 𝐹 = 1 if 𝑐1⋯𝑐𝑚 = 𝑎1⋯𝑎𝑚 and d1⋯dn =

b1⋯bn 𝑜𝑟 𝑏1̅⋯𝑏𝑛̅̅ ̅; Otherwise, 𝐹 = 0.

B. Stage-Grouping Methodology

For a given series of permutations, intuitively, we can use the

pipeline structure to implement them in circuits. If there are N

permutations, we can design an N-stage pipeline, with each

stage implementing one permutation. A packet needs to

traverse N stages with a delay of N clock cycles before entering

the TCAM for the classification. Because each stage is simple

enough, the pipeline can run at a high clock rate and thus

provide a high throughput. One downside of using this pipeline

stage is that it usually requires large hardware resources.

An alternative solution to the pipeline is to use a

combinational logic to implement all N permutations. This

structure is a 1-stage pipeline solution, which is actually the

same as the basic methodology that we have explained.

Normally, a 1-stage pipeline requires much less hardware

resources than an 𝑁-stage pipeline, because we can simplify

the Boolean equations. However, the relatively high critical

path delay, which would lower the clock rate, is a major

concern when we use the 1-stage solution.

Fig. 14. The methodology of stage-grouping

Considering the pros and cons of both 1-stage and 𝑁-stage

structures, we hereby propose a solution called stage-grouping,

which is able to find the best number of stages to achieve a

tradeoff between cost and speed. This method is to group

consecutive pipeline stages together to reduce the number of

pipeline stages. Each new stage implements multiple

permutations, and the new Boolean function of each new stage

can be derived by using the basic methodology.

Fig. 14 shows the proposed solution of stage-grouping. The

stage-grouping methodology constructs a pipeline by adding

stages one by one. Based on greedy strategy, each stage is

generated by grouping as many permutations as possible, as

long as the targeted clock rate can be satisfied.

Because the overall throughput of a pipeline is determined by

the slowest stage(s), it is possible that some exceptionally

complicated permutations would slow down the pipeline. To

address this problem, a simple idea is to duplicate the

bottleneck stage(s). Please note that only the bottleneck stage(s)

rather than the whole pipeline need to be duplicated. So the

extra overhead can be small while the throughput is improved.

Another concern is that the implementation in reality would

be limited by the capacity of FPGA built in the hardware

system. So, we add a parameter 𝑆𝑚𝑎𝑥 in the stage-grouping

methodology to limit the size of the pipeline. It is possible that

𝑆 > 𝑆𝑚𝑎𝑥 before 𝑖 reaches 𝑁 (Line 14). As a result, only part of

the permutations can be put into FPGA. In this case, we should

store the corresponding intermediate classifier rather than the

final classifier of BP compression into TCAM.

VII. DISCUSSION

In this section, we present the architecture in Fig. 15 for

discussion, which is modified from that in Fig. 5 to support

classifier updates and partitioning. As we have mentioned in

previous sections, for a large classifier, we can partition it to

several small parts and then apply BP on each individual part.

Each partition requires one FPGA and one TCAM to

implement. As for classifier incremental updates (e.g., inserting

or deleting some rules), we use a small TCAM called Scratch

TCAM with high priority to store scratch entries representing

the difference between the new classifier and old classifier. As

shown in Fig. 15, a small component called Priority Control is

used to choose which action to be used. If a packet matches

both the scratch TCAM and the partition(s), the action from the

scratch TCAM will be finally reported.

Preprocess
Compressed

Classifier
Packets Actions

(FPGA)

Scratch

TCAM

(TCAM)

Partition 1

Preprocess
Compressed

Classifier
(FPGA)

(TCAM)

Partition 2

Priority

Control

Fig. 15. Modified architecture for classifier update and partitioning

When the system starts, the scratch TCAM is empty. To

insert or delete rules, we compare the Karnaugh Tables of the

new and old classifiers and generate the delta Karnaugh Table,

inside which some points are changed to “Accept” or “Deny”

and marked with “AC” or “DC”, and other points are not

1. Methodology Stage-Grouping(𝑃1, 𝑃1, ⋯ , 𝑃𝑁, 𝑅𝑡, 𝑆𝑚𝑎𝑥)

2. Input:

3. A series of permutations 𝑃1, 𝑃1, ⋯ , 𝑃𝑁;

4. Targeted clock rate 𝑅𝑡;
5. Maximum circuit size 𝑆𝑚𝑎𝑥;

6. Output:

7. 𝑀-stage pipeline 𝑃𝐿;

8. Variable:

9. Current pipeline 𝑃𝐿0, 𝑃𝐿1;

10. Current clock rate 𝑅;

11. Current circuit size 𝑆;

12. Begin

13. 𝑀 = 0; S = 0; 𝑖 = 1; 𝑃𝐿 = ∅;

14. 𝐰𝐡𝐢𝐥𝐞 (𝑖 ≤ 𝑁 && S < 𝑆𝑚𝑎𝑥) do

15. 𝑃𝐿0 = 𝑃𝐿;

16. 𝐟𝐨𝐫 (𝑗 = 𝑖; 𝑗 ≤ 𝑁; 𝑗 = 𝑗 + 1) do

17. Group permutations from 𝑃𝑖 to 𝑃𝑗 into a new stage,

append this stage into 𝑃𝐿0 to form 𝑃𝐿1;

18. Synthesize 𝑃𝐿1, and get 𝑅, 𝑆;

19. 𝐢𝐟 (𝑅 > 𝑅𝑡 && 𝑆 < 𝑆𝑚𝑎𝑥) then

20. 𝑃𝐿 = 𝑃𝐿1;

21. else 𝑀 = 𝑀 + 1; 𝑖 = 𝑗; break;

22. end if

23. end for

24. end while

25. return 𝑀-stage pipeline 𝑃𝐿;

26. End

 12

changed and marked with “ANC” or “DNC”. Then by applying

logic optimization to the “AC” points and “DC” points

separately, we can get an optimized number of “AC” and “DC”

rules (no default rule), which are then stored in the scratch

TCAM. Note that the ”AC” (or “DC”) points can merge some

“ANC” (or “DNC”) points to get a better optimization. The run

time of logic optimization on the small delta Karnaugh Table is

usually tiny. If an incremental update is required when the

system is still active, two scratch TCAMs can be used

alternatively. Because the scratch TCAM is relatively small,

the duplication will not cost much. Note that the scratch TCAM

will be searched directly using the original packet headers

without permutation. When there are enough updates

accumulated, we can do a complete BP compression to move

everything into the main TCAMs and free up the scratch

TCAM. Considering that BP compression and FPGA synthesis

take time, we should start a new complete BP process earlier,

before scratch TCAM becomes full.

VIII. EXPERIMENTS

A. Experiment Setting

Our experiments were based on one real-life firewall

classifier and several artificial classifiers generated by using

ClassBench [15]. We generated three typical types of artificial

classifiers: Firewall (FW), Access Control List (ACL), and IP

Chain (IPC). As Table III shows, the first eight classifiers vary

in size from 60 to 660 rules. The average prefix expansion ratio

of these classifiers is 1.91. The largest expansion is observed in

classifier ipc-1, whose expansion ratio is 2.89, where 202 rules

are expanded to 584 ternary strings (or TCAM entries). We

specifically added two large classifiers. One is acl-4 containing

1209 rules and expanding to 1725 TCAM entries. The other is

acl-5 containing 3708 rules and expanding to 4880 TCAM

entries. We partitioned acl-4 to two parts and acl-5 to four parts

to test the performance of classifier partitioning. For

convenience, we just tried to make the number of entries of the

parts close after range expansion. A better partitioning should

consider the entries after logic optimization.

To evaluate the performance, we compared the BP technique

with McGeer’s algorithm [14], which is the first bit-level

scheme. As shown in Fig. 2, McGeer’s algorithm uses direct

logic optimization (called Heuristic 1) and a process based on

the first-matching property (called Heuristic 2) to reduce

entries. BP does not use the first-matching property, so it can be

combined with McGeer’s algorithm. For each classifier, we

first applied direct logic optimization, then we applied (1)

Heuristic 2; and (2) the BP compression algorithm followed by

Heuristic 2. Because Heuristic 2 would change the classifier

style, as required by Espresso [22] and the BP program, that all

rules are “Accept” except for the default rule as “Deny” (please

note that a classifier will be changed to this style after being

mapped to Boolean Space), we have to do it as the last step. We

chose a sub-optimal solution, Espresso, for logic optimization,

since it has been identified as an NP-hard problem [20].

We implemented the BP algorithm using C++ language and

performed the compression experiments on our Linux

workstation driven by Intel Xeon 2.0GHz E5335 CPUs. In

packet classification, Boolean Space dimension 𝐿 is 104.

Parameters were set to 𝑁𝑟 = 150 and 𝑊𝑚𝑖𝑛 = 54. 𝑁𝑡𝑝 was set

to 3 for the first eight classifiers and to 1 for acl-4, acl-5 and

their partitions. All the partitions were processed in parallel by

multiple CPU Cores. In Table III, we provide the longest

run-time of the partitions. With these data, we are also able to

estimate the total run-time. According to the suggestion in [14],

if McGeer’s Heuristic 2 cannot finish in 12 hours, we just stop

it. Our targeted throughput was set to 100M packets per second.

Based on that, we selected Altera Cyclone III FPGA [23]. We

designed scripts to automatically generate Verilog codes based

on the compression results, then synthesized them by using

Quartus [23] on a Dell D630 laptop computer.

B. Classifier Compression

In Table III, we present the experimental results of direct

logic optimization, BP algorithm, and McGeer’s Heuristic 2.

For the first eight classifiers, the BP compression process can

reduce entries by 31.88% on average in addition to the 22.12%

contributed by logic optimization; Applying McGeer’s

Heuristic 2 over “BP output” can reduce 1.29% entries and over

“logic optimization output” can reduce 7.86%.

In the IPC classifiers, while block permutation can save

53.93% of entries on average, direct logic optimization can

barely give any compression. Especially in ipc-2, the

compression of direct logic optimization is 0. The reason for

this low compression rate in the direct logic optimization phase

is that the rule distributions of the IPC classifiers are very

“sparse”, so direct logic optimization can barely merge rules.

This is what motivated our research on the BP technique.

In the ACL classifiers, we always find that block

permutation contributes much more compression than direct

logic optimization does, a fact from which we can judge that the

ACL classifiers also fall into “sparse” rule distributions.

In the FW classifiers, we witness a compression ratio of

61.23% on average by direct logic optimization. In these cases,

the average compression ratio of block permutation is 6.84%,

which is much smaller than that of direct logic optimization.

The reason is that the rule distributions of the FW classifiers are

quite “dense”, so direct logic optimization has good

performance. In the real-life classifier real-1, because the

classifier is closer to “dense” rule distribution than “sparse”

rule distribution, direct logic optimization contributes a larger

compression ratio than block permutation does. In this case,

however, block permutation can still reduce 83 entries.

While bit-level schemes can yield good compression,

run-time is a challenge. For example, from Table III we can see

that McGeer’s Heuristic 2 takes hours to run. In many cases, it

cannot generate any outcome within 12 hours. As for BP, we

can make a tradeoff between run-time and compression

performance. For the first eight classifiers, if we set 𝑁𝑡𝑝 to 1,

the average run-time can be only 1.9 minutes, but the

compression ratio would drop sharply to 21.13%. In contrast,

we found that 𝑁𝑡𝑝 = 3 is a better tradeoff, with which the

average run-time is 3.4 minutes and the compression is 31.88%.

But for acl-4 and acl-5, with 𝑁𝑡𝑝 = 3, the run-time is too long.

13

TABLE III

CLASSIFIER STATISTICS AND RESULTS FROM BP COMPRESSION EXPERIMENTS

TABLE IV
RESULTS FROM FPGA IMPLEMENTATION EXPERIMENTS

So we set it to 1 at the cost of lower compression performance.

In the experiments, we found that classifier partitioning is very

effective in handling large classifiers. After partitioning, with

the same 𝑁𝑡𝑝 = 1, the run-time of acl-4 can be further reduced

to 18.52 minutes and the compression also be improved to

28.64%. We also observed the similar effect on acl-5. This is

because after partitioning, we can consider more target block

pairs (one from each partition) in each round, as opposed to one

pair considered by the original compression scheme.

C. FPGA Implementation

In this section, we discuss our experiments on FPGA

implementation. In the experiments, we evaluated the overhead

of the BP technique, which covers two aspects: hardware cost

and operation performance of packet classification. The results

are presented in Table IV.

For hardware cost, we used the concept of “Equivalent Gate

Count” to estimate the actual hardware resource saved by using

the BP technique (TCAM resource reduced minus FPGA

resource consumed). From the TCAM chip ICFWTNM1 [19],

we can estimate that the implementation of one TCAM bit

requires about 20 transistors. Because a standard 2-input

NAND gate consists of 4 transistors, we have the following

equation:

 𝑇𝐶𝐴𝑀 𝐺𝑎𝑡𝑒 𝐶𝑜𝑢𝑛𝑡 =
 # 𝑜𝑓 𝑒𝑛𝑡𝑟𝑖𝑒𝑠 ×104 𝑏𝑖𝑡𝑠 ×20 𝑡𝑟𝑎𝑛𝑠𝑖𝑠𝑡𝑜𝑟𝑠

4 𝑡𝑟𝑎𝑛𝑠𝑖𝑠𝑡𝑜𝑟𝑠

The Altera FPGA resource consumption is reported in

Combinational Functions (CFs) and Registers. In the

experiments, we calculate the FPGA gate count as follows:

 𝐹𝑃𝐺𝐴 𝐺𝑎𝑡𝑒 𝐶𝑜𝑢𝑛𝑡 = # 𝑜𝑓 𝐶𝐹𝑠 × 3 + # 𝑜𝑓 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑠 × 6

The throughput requirement of the packet classification

operation was set to no less than 100M packets per second.

Accordingly, the clock rate of the pipeline should be no less

than 100MHz. As Table IV shows, on average we need to use

around 20 pipeline stages to meet the timing requirement, and

the actual average clock rate estimated is 111.24MHz, while the

fastest clock rate is 135.85MHz. Based on this performance, the

average gate count of FPGA consumption is only 23.45% of

that of the TCAM resource saved in the permutation phase

(please see Ratio-1 in Table IV). For a more accurate analysis,

the TCAM saved in the direct logic optimization phase should

be included, and then the average ratio of the FPGA overhead

to the total TCAM saved by both direct logic optimization and

block permutation can be as low as 17.59% (please see Ratio-2

in Table IV). The FPGA overhead of the ACL classifiers is

entries

reduced

compr

ratio

runtime

(sec)

entries

reduced

compr

ratio

runtime

(min)

of

perms

entries

reduced

compr

ratio

runtime

(hour)

entries

reduced

compr

ratio

runtime

(hour)

fw-1 60 115 1.92 69 60.00% 0.33 12 10.43% 0.001 7 0 >0.00% >12 0 >0.00% >12

fw-2 132 277 2.10 173 62.45% 34.72 9 3.25% 0.02 9 0 >0.00% >12 0 >0.00% >12

acl-1 187 357 1.91 50 14.01% 0.18 146 40.90% 2.57 80 10 2.80% 2.71 57 15.97% 4.76
acl-2 217 271 1.25 1 0.37% 0.18 137 50.55% 0.84 125 0 0.00% 1.02 0 0.00% 2.02
acl-3 221 312 1.41 3 0.96% 0.56 99 31.73% 5.03 83 0 0.00% 10.58 0 >0.00% >12

ipc-1 202 584 2.89 14 2.40% 0.39 289 49.49% 5.68 89 31 5.31% 4.59 111 >19.01% >12

ipc-2 207 538 2.60 0 0.00% 0.26 314 58.36% 4.34 106 12 2.23% 1.54 150 27.88% 3.74

Real-life real-1 660 802 1.22 295 36.78% 1.45 83 10.35% 5.83 50 0 >0.00% >12 0 >0.00% >12

avg 235.75 407 1.91 75.63 22.12% 4.76 136.13 31.88% 3.04 6.63 1.29% 39.75 7.86%

acl-4 1209 1725 1.43 51 2.96% 2.18 183 10.61% 88.69 150 0 >0.00% >12 0 >0.00% >12

part-1 750 829 1.11 16 1.93% 0.84 188 22.68% 8.53 150 0 0.00% 8.7 0 >0.00% >12

part-2 459 896 1.95 26 2.90% 0.79 306 34.15% 18.52 150 31 >3.46% >12 50 >5.58% >12

2 parts

in total
1209 1725 42 2.43% 0.84 494 28.64% 18.52 31 >1.80% >12 50 >2.90% >12

acl-5 3708 4880 1.32 106 2.17% 3.27 266 5.45% 91.48 150 11 >0.23% >12 0 >0.00% >12

4 parts

in total
3708 4880 68 1.39% 1.12 1030 21.11% 21.47 121 >2.48% >12 188 >3.85% >12

Block Permutation (BP) Heuristic 2 over BP Heuristic 2 over LO

Class-

Bench

Class-

Bench

Expan

Ratio

Logic Optimization (LO)

Class-

Bench

Source
Classi-

fier

of

Rules

of

Entries

Entries
Gate

Count
Entries

Gate

Count
CFs Registers

Gate

Count
Stages

Clock

Rate

69 35880 12 6240 68 104 828 13.27% 1.97% 1 135.85

173 89960 9 4680 51 104 777 16.60% 0.82% 1 127.57

50 26000 146 75920 2498 2184 20598 27.13% 20.21% 21 108.17

1 520 137 71240 3556 1664 20652 28.99% 28.78% 16 107.68
3 1560 99 51480 2670 2288 21738 42.23% 40.98% 22 103.57
14 7280 289 150280 2605 2600 23415 15.58% 14.86% 25 106.37

0 0 314 163280 3098 2184 22398 13.72% 13.72% 21 100.94

295 153400 83 43160 1372 1456 12852 29.78% 6.54% 14 114.65

part-1 16 8320 188 97760 2462 2808 24234 24.79% 22.85% 27 100.55

part-2 26 13520 306 159120 4509 4368 39735 24.97% 23.02% 42 112.11

acl-5
4 parts

on avg.
17 8840 285 148200 3661 3328 30951 20.88% 19.71% 32 106.23

60.36 31389.09 169.82 88305.45 2413.64 2098.91 19834.36 23.45% 17.59% 20.18 111.24avg.

acl-3
ipc-1
ipc-2
real-1

Classifier

acl-4

Pipeline

fw-1

fw-2
acl-1

acl-2

TCAM saved by

Logic Optimization

TCAM saved by

Block Permutation
FPGA consumed

Ratio-1 Ratio-2

 14

relatively high when compared to the TCAM saved. This is

because the compressions are achieved by swapping relatively

small permutations of blocks. To improve throughput, normally,

we can use more stages. By this way, we can make each stage

smaller and thus run at a higher clock rate. But the overall

hardware cost will increase.

Our way of implementing FPGA is to use the stage-grouping

methodology in Fig. 14. During the implementation, we tried to

pack as many permutations into one stage as possible before

constructing the next one. As Line 20 in Fig. 14 indicates, we

should add one permutation at a time to a stage. But in the

experiments, to reduce the synthesis time, we have tried to add

multiple permutations each time. On average, the

implementation time is 42.39 minutes (the FPGA experiments

were done on a laptop computer; the implementation time can

be shorter if using a high performance computer).

So far, in our experiments, we have shown that the proposed

BP technique can significantly reduce TCAM entries while the

overhead is much smaller than the resource saved.

IX. CONCLUSION

In this paper, we propose a new technique called Block

Permutation (BP) to reduce the number of TCAM entries

required to represent a classifier. The BP technique

significantly improves the compression rate under the

circumstances where direct logic optimization cannot perform

effectively. The improvement is achieved by performing a

series of permutations to change the distribution of rule

elements in Boolean Space from sparse to dense, thus allowing

more rules to be merged into each TCAM entry. The proposed

BP is a new technique in that it searches for nonequivalent

classifiers rather than equivalent ones, as previous schemes did.

Because BP is a technique related to the common topic of logic

optimization, it is not limited to the applications of packet

classification and TCAM, but can also be applied to other

hardware implementation-based applications.

REFERENCES

[1] D.E. Taylor, “Survey and taxonomy of packet classification techniques,”
ACM Computer Surverys, pp. 238–275, 2005.

[2] Y. Xu, Z. Liu, Z. Zhang, H. J. Chao, “An Ultra High Throughput and
Memory Efficient Pipeline Architecture for Multi-Match Packet
Classification without TCAMs”, ACM/IEEE ANCS, 2009.

[3] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory

(CAM) circuits and architectures: A tutorial and survey,” IEEE Journal of
Solid-State Circuits, vol. 41, no. 3, pp. 712–727, Mar 2006.

[4] E. Spitznagel, D. Taylor, and J. Turner, “Packet classification using

extended tcams,” IEEE ICNP, 2003.
[5] A. Bremler-Barr and D. Hendler, "Space-Efficient TCAM-based

Classification Using Gray Coding," in IEEE INFOCOM, 2007.

[6] A. Bremler-Barr, D. Hay and D. Hendler, "Layered Interval Codes for
TCAM-based Classification," in IEEE INFOCOM, 2009.

[7] M. Bando, N. S. Artan, R. Wei, X. Guo and H. J. Chao, "Range Hash for

Regular Expression Pre-Filtering," ACM/IEEE ANCS, 2010.
[8] C. R. Meiners, A. X. Liu and E. Torng, “Topological Transformation

Approaches to Optimizing TCAM-Based Packet Classification Systems,”

in ACM SIGMETRICS, 2009.
[9] O. Rottenstreich and I. Keslassy, “Worst-Case TCAM Rule Expansion,”

in IEEE INFOCOM, 2010.

[10] O. Rottenstreich, M. Radan, Y. Cassuto, I. Keslassy, C. Arad, T. Mizrahi,
Y. Revah, and A. Hassidim, “Compressing forwarding tables,” in IEEE

INFOCOM, 2013

[11] O. Rottenstreich, M. Radan, Y. Cassuto, I. Keslassy, C. Arad, T. Mizrahi,

Y. Revah, and A. Hassidim, “Compressing Forwarding Tables for
Datacenter Scalability,” in IEEE JSAC Switching and Routing for

Scalable and Energy-efficient Datacenter Networks 2014..

[12] Q. Dong, S. Banerjee, J. Wang, D. Agrawal, and A. Shukla, “Packet
classifiers in ternary CAMs can be smaller,” in SIGMETRICS, 2006.

[13] C. Meiners, A. X. Liu, and Eric Torng, “TCAM Razor: A Systematic

Approach Towards Minimizing Packet Classifiers in TCAMs,” in
Proceedings of IEEE ICNP, 2007.

[14] R. McGeer and P. Yalagandula, “Minimizing Rulesets for TCAM

Implementation,” in Proceedings of IEEE INFOCOM, 2009.
[15] D. E. Taylor and J. S. Turner, “ClassBench: A Packet Classification

Benchmark,” IEEE INFOCOM, 2005

[16] Maurice Karnaugh, “The Map Method for Synthesis of Combinational
Logic Circuits,” Transactions of the American Institute of Electrical

Engineers part I 72 (9): 593–599, 1953.

[17] G. D. Hachtel and F. Somenzi, “Logic synthesis and verification
algorithms,” Kluwer Academic Publishers, 2002.

[18] J. M. Rabaey, “Digital Integrated Circuits (2nd Edition),” chap. 6,

Prentice-Hall, 2003
[19] University of Waterloo, IC Tape-out History,

http://www.ece.uwaterloo.ca/~cdr/www/chip.html

[20] C. Umans, “Complexity of two-level logic minimization,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 2006

[21] V.P. Nelson, “Digital Circuit Analysis and Design,” Prentice Hall, 1995
[22] P. McGeer, J. Sanghavi, R. Brayton, and A. Sangiovanni-Vincentelli,

“Espresso-signature: A new exact minimizer for logic functions,” IEEE
Transactions on VLSI Systems, 1993.

[23] Altera Cyclone FPGA and Quartus Tool. http://www.altera.com/
[24] C. Meiners, A. X. Liu, and Eric Torng, “Bit Weaving: A Non-prefix

Approach to Compressing Packet Classifiers in TCAMs,” in Proceedings
of IEEE ICNP, 2009.

[25] O. Rottenstreich, I. Keslassy, A. Hassidim, H. Kaplan and E. Porat, "On

Finding an Optimal TCAM Encoding Scheme for Packet Classification,"
in IEEE INFOCOM, 2013.

[26] R. Wei, Y. Xu, and H. J. Chao, “Block permutations in Boolean Space to

Minimize TCAM for Packet Classification,” in IEEE INFOCOM, 2012.

Rihua Wei (M’12) received his B.S. degree in

Telecom Engineering from Beijing University of Posts
and Telecoms, China, in 1999, and his M.S. degrees in

electrical and electronics engineering from Tsinghua

University, China, in 2003, and from New York
University Polytechnic School of Engineering, USA, in

2011. He is currently with Tensorcom Inc., Carlsbad,

CA, USA. His areas of interests include networking,
ASIC and System-on-Chip.

Yang Xu (M’05) received his B.E. degree from

Beijing University of Posts and Telecoms, China, in
2001, and his PhD in computer science and technology

from Tsinghua University, China, in 2007. He is

currently a Research Associate Professor with the
Department of Electrical and Computer Engineering,

New York University Polytechnic School of

Engineering, USA. His research interests include
software-defined networks, data center networks,

network on chip and high-speed network security.

H. Jonathan Chao (M’83-F’01) received his PhD in

EE from The Ohio State University in 1985. He is

currently a Professor with the Department of

Electrical and Computer Engineering, New York
University Polytechnic School of Engineering,

Brooklyn, NY, USA, where he joined the faculty in

January 1992. He has been doing research in the areas
of network designs in software defined networking,

datacenters, terabit switches/routers, network security

and network on the chip.

