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 

Abstract—Packet classification is one of the major challenges 

today in designing high-speed routers and firewalls, as it involves 

sophisticated multi-dimensional searching. Ternary Content 

Addressable Memory (TCAM) has been widely used to implement 

packet classification, thanks to its parallel search capability and 

constant processing speed. However, TCAMs have limitations of 

high cost and high power consumption, which ignite the desire to 

reduce TCAM usage. Recently, many works have been presented 

on this subject due to two opportunities. One is the well-known 

range expansion problem for packet classifiers to be stored in 

TCAM entries. The other is that there often exists redundancy 

among rules. In this paper, we propose a novel technique called 

Block Permutation (BP) to compress the packet classification rules 

stored in TCAMs. Unlike previous schemes that compress 

classifiers by converting the original classifiers to semantically 

equivalent classifiers, the BP technique innovatively finds 

semantically nonequivalent classifiers to achieve compression by 

performing block-based permutations on the rules represented in 

Boolean Space. We have developed an efficient heuristic approach 

to find permutations for compression and have designed its 

hardware implementation by using Field-Programmable Gate 

Array (FPGA) to preprocess incoming packets. Our experiments 

with ClassBench classifiers and Internet Service Provider (ISP) 

real-life classifiers show that the proposed BP technique can 

significantly reduce 31.88% TCAM entries on average, in 

addition to the reduction contributed by other state-of-the-art 

schemes. 

 
Index Terms—Classifier Minimization, Logic Optimization, 

Packet Classification, Ternary Content-Addressable Memory 

(TCAM), Field-Programmable Gate Array (FPGA).   

 

I. INTRODUCTION 

acket classification is used as a basic building block in 

many network applications, such as quality of service 

(QoS), flow-based routing, firewalls, and network address 

translation (NAT) [1][2]. In packet classification, information 

is extracted from the packet header and compared against a 

classifier consisting of a list of rules. Once an incoming packet 

matches some rules, it will be processed based on the action  
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associated with the highest-priority matched rule. 

    Table I gives a sample classifier with three rules, in which 

each rule specifies a pattern of five fields: source IP and 

destination IP (prefixes), source port and destination port 

(ranges), and protocol type. According to the traditional 

viewpoint, a packet classifier consists of five dimensions due to 

the five fields. But in this paper, from the geometric point of 

view, we treat each rule as a block in the 104-dimensional 

Boolean Space corresponding to the 104 bits in the five fields. 

TABLE I  
A SAMPLE PACKET CLASSIFIER 

ProtocolSource IP Dest IP Source Port Dest Port Action

Accept

Rule

R1

166.111.*.*

* 192.168.1.1

192.168.1.*

[1, 5] UDP

** *R2

R3 * * * * * Deny

[1, 5]

Deny

 
 

Ternary Content Addressable Memory (TCAM) is widely 

used to implement packet classification because of its parallel 

search capability and constant processing speed. A TCAM has 

a massive array of entries [3], in which each bit can be 

represented as ‘0’, ‘1’, or ‘*’ (wildcard). Before a rule can be 

stored in TCAMs, its range fields have to be converted to 

prefixes. This would cause the well-known range expansion 

problem. For example, rule R2 in Table I requires only one 

TCAM entry since it doesn’t contain any range in all fields. But 

for rule R1, both the source port and destination port contain a 

range [1, 5]. So both of them need to be expanded to three 

prefixes, i.e., “001”, “01*”, and “10*”. The combination of the 

prefix specifications of the two ranges makes R1 consumes 3 ×
3 = 9 TCAM entries. Besides, there often exists redundancy 

among rules. For example, R2 is actually unnecessary and can 

be safely removed from the classifier, because it is completely 

covered by R3. These two problems lead to inefficiency in 

TCAM use. Because TCAMs are expensive and power-hungry, 

it is very important to reduce the number of TCAM entries 

required to represent a classifier.  

Previous works on TCAM reduction can be classified into 

two categories, Range-Field Optimization and All-Field 

Optimization. Range-field optimization schemes focus only on 

the source port field and destination port field to address the 

range expansion problem. Normally, the best compression of a 

range-field optimization scheme is to reduce an expanded 

classifier to the size before expansion. In this category, [4] 

attempts to modify TCAM hardware architecture to support 

range matching; [6][7] replace each range with a new binary 

code to avoid range expansion; [5][9][25] try to expand a range 

to a minimum number of binary codes; [8] first transforms 
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ranges to simplified ones, and then finds the minimum 

expansion on the new ranges. The novelty of [8] is that it can 

optimize rule length (some related works can also be found in 

[10][11]). In the category of all-field optimization, proposed 

schemes [12][13] [14][24] work on all the five fields to address 

both the aforementioned problems based on the optimization of 

ternary strings, which can be prefix or arbitrary ternary string. 

The common part of all these schemes is to first expand all 

ranges to prefixes, getting a new classifier with no range fields, 

and then convert the non-range classifier to a semantically 

equivalent one that consumes fewer TCAM entries. Because 

all-field optimization schemes consider both the range 

expansion and the redundancy among rules, they are able to 

find a classifier that is smaller than the original one before 

range expansion. 

The new technique proposed in this paper, Block 

Permutation (BP), is also an all-field optimization solution. 

Distinct from previous schemes, BP finds semantically 

nonequivalent classifiers. More specifically, it maps rules to 

blocks in Boolean Space and swaps blocks (so called block 

permutation, please refer Section V for a formal definition) to 

seek opportunities of merging blocks. In BP, the incoming 

packets need to be preprocessed before being compared against 

the compressed classifier in TCAM. This preprocessing can be 

implemented by FPGA. In this paper, we propose an efficient 

heuristic algorithm to find permutations and present an FPGA 

implementation methodology. Our experiments on ClassBench 

[15] classifiers and ISP classifiers show that the BP technique 

can significantly reduce TCAM entries. 

The rest of this paper is organized as follows: Section II 

reviews related works in detail and gives the motivation for BP. 

Section III introduces BP technique with a warm-up example. 

Section IV formally defines the BP problem and analyzes its 

complexity. Section V proposes the heuristic BP algorithm to 

compress classifiers. Section VI proposes an FPGA 

implementation methodology. Section VII discusses the 

strategy of classifier update. Section VIII presents the 

experimental results. Finally, Section IX concludes the paper. 

II. RELATED WORK AND MOTIVATION 

Previous schemes find semantically equivalent classifiers to 

reduce TCAM usage by taking advantage of two properties: 

1)  Action-Oriented. In packet classification, we are 

interested in the action rather than the ID associated with the 

matched rule. Therefore, we can modify a classifier as long as 

the modification doesn’t change the action returned by each 

classification operation. Consider Fig. 1(a) as an example. We 

can merge R1 and R2 into R4. Though the rules have been 

changed, the compressed classifier is still equivalent to the 

original classifier; i.e. the compressed classifier can still report 

the same action as the original classifier does. This property 

actually embodies the principle of Boolean logic optimization. 

2)  First-Matching. When multiple rules match the same 

packet, TCAM reports only the first matched rule. Fig. 1(b) and 

(c) are two examples showing how to compress a classifier 

using the first-matching property. In Fig. 1(b), because R2 is 

completely covered by R1, any packet matching R2 will 

definitely match R1 as well. So, R2 is a redundant rule. 

Removing it will not affect the packet classification results. In 

Fig. 1(c), R1, R2, and R3 cannot be directly merged. By adding 

R0, we can merge all of them with R0 into a single rule R6. But 

this would result in a non-equivalent classifier, because R0 

forces the action of “0000” to be “Accept”, while it is “Deny” 

in the original classifier. To make the classifiers equivalent, we 

add R5 above R0. Because of the first-matching property, R0 

will be blocked by R5, keeping the classifiers equivalent.  

R1:    00**    Accept

R2:    01**    Accept

R3:    ****     Deny

Original Classifier

R4:    0***    Accept

R3:    ****     Deny

Compressed Classifier

(a) Action Oriented

R1:    00**    Deny

R2:    000*   Accept

R3:    1***   Accept

Original Classifier

R4:    00**    Deny

R3:    1***   Accept

Compressed Classifier
(b) First Matching-1

R1:    0001    Accept

R2:    001*    Accept

R3:    01**    Accept

Original Classifier

R5:    0000    Deny

R4:    ****     Deny

Compressed Classifier

(c) First Matching-2

R4:    ****    Deny

R1:    0001    Accept

R2:    001*    Accept

R3:    01**    Accept

Variant Classifier

R4:    ****    Deny

R5:    0000    Deny

R0:    0000    Accept

R6:    0***    Accept

 

Fig. 1. Scenarios of the two properties for prefix compression. (a) Action 

Oriented. (b) First Matching -1. (c) First Matching -2. 
 

These two properties have been used in both range-field 

optimization and all-field optimization. In the category of 

range-field optimization, [5] first expands a range to 

binary-reflected gray codes and then optimizes the codes. The 

second step of [5] is actually a case of logic optimization. 

[9][25] propose optimal solutions of range expansion and also 

embody the idea of logic optimization and the first-matching 

property. In the category of all-field optimization, Dong et al. in 

[12] proposed four simple heuristic algorithms to find 

equivalent classifiers consuming fewer TCAM entries. Dong’s 

algorithms are also special cases of logic optimization and the 

first-matching property. Liu et al. in [13] propose an algorithm 

called TCAM Razor, which uses Firewall Decision Diagram 

(FDD) to convert a multi-field rule to multiple one-field rules 

in a hierarchy. Because TCAM Razor can guarantee that a 

range in one field expands to the optimal number of prefixes 

based on the first-matching property, it achieves a better 

compression than [12] does. 

While [5][9][25] considers only range fields, [12][13] 

consider all fields in a classifier. However, [12][13] work on 

each field individually and do not explore the compression 

across different fields. Bit Weaving in [24] is the first all-field 

optimization scheme attempting to break the boundaries of 

fields. It can find and merge two rules with one bit different, no 

matter in which field the bit is located. Another significant 
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cross-field solution is proposed in [14] by McGeer et al. In that 

solution, the classifier compression problem is a special logic 

optimization problem with 104 variables, where each rule in the 

classifier is a product of several variables in Boolean 

representation (or say, a block in Boolean Space). Therefore, 

the existing logic optimization techniques can be applied to 

compress classifiers by using the action-oriented property. 

Moreover, with the first-matching property of TCAM, the 

compression can be even better [14]. 

Fig. 2 is an example of McGeer’s scheme [14], which 

consists of three steps. In the first step, the original classifier 

(with six rules) is mapped into the Boolean Space shown in the 

Karnaugh Table [16]. Each rule corresponds to a block (or a 

point) in the table. During the mapping, the overlapping portion 

of rules is associated with the action of the highest-priority rule. 

For example, the point in the upper-left corner (i.e., 

“0000(WXYZ)”), which is covered by both the first and the last 

rules, is assigned with the action of the first rule. In the second 

step, classical logic optimization algorithms are applied in the 

Karnaugh Table to merge the neighboring points with the same 

action to reduce the number of rules (i.e. to merge “Accept” 

points and get Classifier 1 in the example). In the third step, the 

first-matching property is applied to Classifier 1. This 

application is similar to the example in Fig. 1 (c), and as a result, 

we can get an even smaller classifier that has only three rules 

(Classifier 2). Please note that all three classifiers in the 

example are semantically equivalent since they correspond to 

the same Karnaugh Table. 

A

00 01 11 10

00

01

11

10

WX

YZ

D D D

A A D D

A A D D

A A D D

Karnaugh Table

A: Accept   D: Deny

Original Classifier

000*     Accept

0101     Accept

011*     Accept

001*     Accept

****       Deny

WXYZ

00**     Accept

0**1     Accept

0*1*     Accept

****       Deny

0100    Deny

0***     Accept

****      Deny

Logic 

Optim

First 

Match

WA  YWZWXWA 

ZYXWD 

Classifier 1Classifier 2

*100       Deny

 

Fig. 2.   An example of the scheme proposed by McGeer [14] 
 

McGeer’s scheme [14] is indeed representative of previous 

schemes. First, it is a pure bit-level solution that breaks the 

boundaries of fields and exploits compression opportunities in 

every bit of a classifier. Logic optimization at the bit-level is, by 

nature, better than that limited to a field. Second, it takes 

advantage of the first-matching property. However, the 

performance of this scheme greatly depends on the rule 

distribution of a classifier (i.e., the distributions of rules with 

action “Accept” or “Deny” in the Boolean Space). 

In Fig. 3, we show two classifiers in different rule 

distributions. In Fig. 3 (a), rule elements associated with the 

same action are densely populated (here, a rule element is the 

smallest unit, i.e., a point in the Boolean Space associated with 

an action), while in Fig. 3 (b), rule elements are spread sparsely 

in the Boolean Space. Obviously, logic optimization and the 

first-matching property are very suitable for handling the 

densely populated rule distribution in Fig. 3 (a). In contrast, 

logic optimization and the first-matching property perform 

badly under the rule distribution in Fig. 3 (b). This is because 

rule elements in Fig. 3 (b) are spread sparsely and no any two 

neighboring rule elements have the same action; thus, no two 

elements can be directly merged using logic optimization. 

Therefore, under such circumstances, logic optimization cannot 

contribute much compression. Neither can the first-matching 

property. Because, for example, to reduce the number of 

“Accept” rules using the first-matching property, we have to 

create and put many “Deny” rules in the high-priority places 

(similar to what we have done in Fig. 1 (c)). This case would 

result in an even larger classifier. 

A

00 01 11 10

00

01

11

10

WX

YZ

A

A

A

A

A

A

D D D

D D

D D

D D

D

00 01 11 10

00

01

11

10

WX

YZ

A

D

D

A

A

D

A D A

A D

D A

A D

(a) Dense (b) Sparse

0001  Accept

0010  Accept

0100  Accept

****   Deny

0111  Accept

1101  Accept

1110  Accept

1000  Accept

1011  Accept

0000  Accept

0001  Accept

0011  Accept

****    Deny

0010  Accept

0101  Accept

0111  Accept

0110  Accept

WXYZ WXYZ

 

Fig. 3.   Typical Rule Distributions (a) Dense (b) Sparse 
 

The above observation motivates us to develop the BP 

technique to compress classifiers in sparse rule distributions 

like the one shown in Fig. 3 (b). BP first converts sparse rule 

distributions to dense rule distributions by swapping blocks (or 

points), and then applies the logic optimization to merge rule 

elements that cannot be merged originally. This technique is a 

good complement for previous schemes.  

Similar to McGeer’s scheme [14], the BP technique is also a 

bit-level solution, except that BP swaps blocks (or points) to 

generate a nonequivalent classifier and thus needs 

preprocessing on incoming packets. Bit Weaving [24] also 

swaps bits of rules in a classifier. But its purpose is not to 

change rule distribution and the finial output is still an 

equivalent classifier, which is fundamentally different from BP. 

Layered Interval Coding in [6] also needs preprocessing on 

incoming packets. But it is not based on logic optimization and 

the first-matching property, and requires extra bits in each 

TCAM entry. Its working conditions are different from BP’s. 

In the rest of the paper, we will present the details of the BP 

technique. For convenience, all the classifiers in the examples 

consist of several “Accept” rules followed by a “Deny” rule as 

the default rule. For simplicity, all rules consist of only 4 bits, 

which are denoted by W, X, Y, and Z, respectively. We always 

assume that the default order of bits is WXYZ. So, denotation 

like Point “0000(WXYZ)” will be simplified to “0000”.  

III. A WARM-UP EXAMPLE OF BP 

We use a simple example in Fig. 4 to demonstrate the main 

idea of BP. In the example, the Original Classifier will be 

compressed by applying two simple permutations to convert 

the classifier’s rule distribution from sparse to dense. 
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11
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YZ
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D
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D

D

D D D

A D
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A D

D

00 01 11 10

00

01

11

10

WX

YZ

A

D

A

A

D

A

D D D

D D

D D

D D

D

00 01 11 10

00

01

11

10

WX

YZ

D

A

D

A

A

A

D D D

D D

D D

D D

Swap Columns 

11 and 01

Swap  Rows 

01 and 11

R6:   0*01 Accept

Set Up

Query
Packet Headers 1101

(WXYZ)
0110

0101

1110

0111

1110

Accept

Deny

Original Classifier

Permutation 1

Permutation 2

Classifier 1 Classifier 2

Compare

WXYZ

Original Table Table 1 Table 2

WXYZ

WXYZ

R2:   0001 Accept

R3:   0010 Accept

R4:   1110 Accept

R5:   **** Deny

R1:   1101 Accept

R7:   0*10 Accept

R5:   **** Deny

R8:   0*1* Accept

R5:   **** Deny

( 11**<>01** )

( **01<>**11 )

Assistant Blocks
Target Blocks

Permutation 1

( 11**<>01** )

Permutation 2

( **01<>**11 )

 

Fig. 4.   An example of the BP technique 

 

Preprocessing Compressed 

Classifier 

(TCAM)

Packets Actions

(FPGA)

 

Fig. 5.   The architecture of BP implementation 

 

The two permutations in Fig. 4 are denoted as “11**<>01**” 

and “**01<>**11” in order. The first permutation 

“11**<>01**” is to swap Columns “11” and “01” in the 

Original Table. In this permutation, counterpart points in the 

two columns exchange their positions. For example, “0100” 

exchanges with “0111”. As a result, we get Table 1. In the 

second permutation “**01<>**11”, we swap Rows “01” and 

“11” in Table 1 and get Table 2. Then by applying logic 

optimization in Table 2, the original five rules are merged into 

two rules. Finally, we get a compressed classifier that will be 

stored in a TCAM as Fig. 5 shows.  

When a packet comes for query, correspondingly, we need to 

apply the same permutations to the header of the packet, which 

is the preprocessing step as shown in Fig. 5. In the first 

permutation, if the WX bits of the packet header are “11” (or 

“01”), we change them to “01” (or “11”); otherwise, we keep 

the WX bits unchanged. In the second permutation, similar 

processing is done on YZ bits. Obviously, by using the 

preprocessed packet headers to look up Classifier 2, we get the 

same actions as those we get when using the original packet 

headers to search the Original Classifier.  

For the practicality of this BP scheme, we need to consider 

the following issues: 

1) Compression Performance. In L-dimensional Boolean 

Space, the best compression that BP can do is to move all 

“Accept” points (or blocks) together and merge them into a 

block, which can be represented by a range. According to 

[9][25], that range expands to at least L entries. If there are 

more “Accept” points than “Deny” points, we can turn to move 

“Deny” points, then the number can be as low as ⌈(𝐿 + 1) 2⁄ ⌉. 

2) Overhead. While BP can reduce the TCAM size, the 

preprocessing does introduce overhead. But the overhead can 

be much smaller than that the TCAM resource saved.  

Let’s use Permutation 2 in Fig. 4 (i.e., “**01<>**11”) as an 

example that can save one TCAM entry, to explain how to 

compute the overhead. Suppose that before the permutation, the 

packet header has four bits, which are 𝑊(1), 𝑋(1), 𝑌(1) , and 

𝑍(1). After that, the four bits are converted to 𝑊(2), 𝑋(2), 𝑌(2), 

and 𝑍(2). Traditionally, we can construct Boolean equations to 

represent this permutation. Then by simplifying those 

equations, we can tell the overhead of circuit implementation. 

Mathematically, this is a Multi-Output Logic Optimization 

Problem [17].  
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Fig. 6.   Computing overhead by applying logic optimization 
 

To solve this problem, as shown in Fig. 6, we draw Karnaugh 

Tables (one table to represent the conversion of one bit), and 

then do logic optimization in each table, finally arriving at the 

simplified Boolean equations that are listed beneath each table. 



 

 

5 

From those equations, we can see that Permutation 2 only 

changes the value of 𝑌  bit, requiring one XOR gate to 

implement. Thus, the total overhead of Permutation 2 is only 

one XOR gate (equal to 6 transistors [18]), while it can save one 

TCAM entry. In packet classification, one TCAM entry has 104 

bits (though only 4 bits in this example). According to [19], one 

TCAM bit requires 20 transistors. It is easy to calculate that the 

overhead is much smaller than the resource saved. Actually, 

even if without TCAM, BP is still worth doing. For example, if 

directly synthesizing classifiers in Fig. 4, the Original Classifier 

needs four L-input gates while Classifier 2 needs only one 

(L-2)-input gate (L=104) and overhead is only two XOR gates. 

3) Processing Speed. The system throughput is decided by 

the slower of preprocessing and TCAM searching. To ensure 

high performance, the preprocessing needs to be implemented 

by hardware. 

4) Programmability. Because the classifier may require 

updates from time to time, programmability is another concern 

in the BP technique. Both FPGA and RAM memory can 

provide programmability for the preprocessing. But 

considering the requirement of processing speed and the 

complexity of storing a series of permutations into a memory, 

we suggest using FPGA. 

5) Power. Because one typical reason for TCAM 

optimization is to reduce power consumption, we should 

guarantee that BP can save power. Due to its architectures, an 

SRAM-based FPGA is generally more power efficient than a 

TCAM with the same gate count. After applying BP, if the total 

gate count of FPGA and TCAM is smaller than the original gate 

count of TCAM, we can think power is saved. So to simplify 

the analysis, we consider only circuit size in the paper. 

IV. BP PROBLEM AND COMPLEXITY 

We now formally define the block permutation problem as 

the following optimization problem. 

BP Optimization Problem: For a given classifier 𝐶1, suppose 

that P is the set of all possible series of permutations; find a 

series of permutations 𝑃1 (𝑃1 ∈ 𝑃) to map 𝐶1 to 𝐶2, such that 

|𝑃1| + |𝐶2| is minimized; i.e., 

𝑎𝑟𝑔𝑚𝑖𝑛
𝑃1∈𝑃

(|𝑃1| + |𝐶2|), 

where |𝑃1| is the FPGA size required by 𝑃1 , and |𝐶2| is the 

TCAM size required by 𝐶2 . (We compare FPGA size and 

TCAM size on the basis of equivalent gate count; please refer to 

Section IX for the formulas.) 

As we mentioned in the previous section, the computation of 

|𝑃1| involves logic optimization, but the computation of |𝐶1| is 

very straightforward. If a given classifier 𝐶1 contains N M-bit 

rules, then |𝐶1| = 𝑁𝑀 TCAM bits. It is easy to see that  

𝑎𝑟𝑔𝑚𝑖𝑛
𝑃1∈𝑃

(|𝑃1| + |𝐶2|) ≤ |𝐶1|. 

This is because the classifier will not be changed if we don’t do 

any permutation. In this case, 𝑃1 = ∅, 𝐶2 = 𝐶1, |𝑃1| + |𝐶2| =
|𝐶1|. Thus, this optimization problem is equivalent to a series of 

decision problems as follows: 

BP Decision Problem: For a given classifier 𝐶1 , suppose 

that P is the set of all possible series of permutations; check if 

there exists a series of permutations 𝑃1 (𝑃1 ∈ 𝑃) to map 𝐶1 to 

𝐶2 , such that |𝑃1| + |𝐶2| = 𝑘 (𝑘 = 1,⋯ , |𝐶1|) , where |𝑃1|  is 

the FPGA size required by 𝑃1, and |𝐶1| and |𝐶2| are the TCAM 

sizes required  by 𝐶1 and  𝐶2, respectively. 

By trying k from 1 to |𝐶1| to solve the decision problems, by 

no more than |𝐶1| times, we can solve the optimization problem. 

However, each of these decision problems is very “hard” to 

solve. Even for a given series of permutations P, we cannot 

“quickly” verify the decision problem in “Polynomial-time”, 

because the computation of |𝑃|  requires logic optimization, 

which is known to be an NP-hard problem [20]. The 

complexity of logic optimization grows quickly as the number 

of dimensions grows. For example, Quine-McClusky algorithm 

[21] is a classic optimal solution for the logic optimization 

problem, but its run-time complexity is too high to support a 

large problem space. 

To find the optimal solution for the BP problem, one possible 

way is brute-force. Such a solution, however, is unrealistic. Let 

us think about a brute-force method. As we know, block 

permutations only change rule distribution and don’t add or 

delete any rule elements. No matter how many permutations we 

execute, the only difference between 𝐶1 and 𝐶2 is the positions 

of rule elements, so we can draw a mapping table to record the 

location changes of all rule elements. Actually, a mapping table 

represents a series of special permutations, in which each 

permutation only swaps two rule elements. By trying all 

possible mapping tables, we can get the optimal solution. If the 

number of dimensions is 𝐿 (i.e., each rule has 𝐿 bits), then the 

number of rule elements is 2𝐿. According to the mathematical 

theory of Permutations and Combinations, the number of 

mapping tables can be up to (1 ∗ 2 ∗ ⋯∗ 2𝐿) = (2𝐿)! . In 

packet classification, 𝐿 = 104. We can see then that the search 

space is prohibitively huge. So brute-force is impractical.   

Therefore, in this paper we develop a heuristic algorithm to 

efficiently search approximation solutions. 

V. COMPRESSING CLASSIFIERS  

A. Terms and Concepts 

Before introducing the heuristic BP algorithm, we first 

define several terms and concepts below: 

1) Block Size: The size of a block is defined as the number 

of points that are contained in the block. To simplify the 

description, in this paper we use the number of wildcards in the 

Boolean representation to denote the size of a block. For 

example, we say the size of the block “0*1*” in Table 2 of Fig. 

4 is 2 wildcards.  

2) Distance: The distance of two blocks is the Hamming 

distance of their Boolean representations. To get the distance, 

we can count the number of bits in which two Boolean 

representations have different non-wildcard values. For 

example, the distance between “0001” and “1101” is 2; the 

distance between “0*01” and “01*1” is 0.  
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3) Direction: Direction indicates how a block spans 

different dimensions in Boolean Space. We can judge the 

direction of a block by the positions of the wildcards in the 

Boolean representation. If two blocks have wildcards appearing 

exactly in the same bits of their Boolean representations, we say 

these two blocks are in the same direction. For example, “0*01” 

and “0*10” are in the same direction, while “0*01” and “*010” 

are not. Any two points that have no wildcard in their Boolean 

representations are considered in the same direction. 

TABLE II  

CONDITIONS OF MERGING AND PERMUTING TWO BLOCKS 

Merging
Permutation

(2) Same block size

(1) Block distance = 1 (1) Block distance >= 2

(4) Same action (4) Same action

(2) Same block size

(3) Same direction (3) Same direction

Target Blocks Assistant Blocks

(1) Block distance >= 1

(2) Same block size

(3) Same direction

(4) Cover one and only 

       one target block
 

4) Merging: In Boolean Space, if two blocks meet the 

condition of “Merging” in Table II, we can directly merge them 

into one block. This operation is called Merging. Please note 

that “Same action” in Table II means all points in the related 

two blocks are associated with the same action. 

5) Permutation, Target Blocks, and Assistant Blocks: A 

Permutation is specified by a pair of Target Blocks and a pair of 

Assistant Blocks. The operation of a permutation consists of 

two steps: swapping the assistant blocks, and then merging the 

target blocks. A pair of target blocks and its corresponding pair 

of assistant blocks should satisfy the conditions of “Target 

Blocks” and “Assistant Blocks” in Table II, respectively. 

According to the conditions, there should be one target block 

covered by one of the two assistant blocks and moved during 

the swapping, while the other target block remains fixed. This 

operation of swapping assistant blocks can reduce the distance 

between two target blocks to one, so that they can be merged. 

Consider Table 1 of Fig. 4 as an example. We swap assistant 

blocks “**01” and “**11” to merge target blocks “0*01” and 

“0*10” (please note that “0*01” is covered by “**01”). 

Normally, to merge two target blocks, there might be more than 

one valid assistant block pair as options. For example, for target 

blocks “0*01” and “0*10” in Table 1 of Fig. 4, there is another 

valid assistant block pair “**10” and “**11”. Please note that 

the size of assistant blocks determines the overhead. 

B. Properties 

Before presenting the heuristic BP algorithm, we first 

introduce a series of properties of assistant blocks to narrow 

down the search space to reduce the computation complexity.  

Property 1: If there are multiple pairs of candidate assistant 

blocks for a given pair of target blocks, to minimize the 

permutation overhead we should choose the largest assistant 

blocks to swap. 

It is important to point out that swapping small blocks causes 

more overhead than swapping big blocks, because small blocks 

have fewer wildcards in the Boolean representations, hence 

involving more non-wildcard bits into the permutations. For 

example, in Permutation 2 of Fig. 4, as we explained in Section 

III, we choose “**01” and “**11” as a pair of assistant blocks. 

As a result, the overhead is one XOR gate. But if we choose 

another pair of smaller assistant blocks, such as “0*01” and 

“0*11”, we need one OR gate and two AND gates in addition to 

one XOR gate. Thus, to reduce the overhead, we should choose 

large blocks to swap when doing the permutation operations. 

Here, we continue to introduce the following property that 

discloses the relation between assistant block size, target block 

size, and the distance of two target blocks. This property is very 

useful for reducing the computation complexity. 

Property 2: Assuming that the size of an assistant block is 𝑊𝑝 

wildcards, the size of its corresponding target block is 𝑊𝑡 

wildcards, the distance between the two target blocks is 𝐷, and 

the dimension of Boolean Space is 𝐿 (i.e., each rule contains 𝐿 

bits), there exists the following relationship: 

𝑊𝑡 ≤ 𝑊𝑝 ≤ (𝐿 − 𝐷) 

We explain Property 2 using Lemmas 1-3 as follows:  

Lemma 1: 𝑊𝑝 ≥ 𝑊𝑡 . 

Proof: Lemma 1 discloses the lower bound of assistant block 

size. According to Table II, there must be an assistant block 

fully covering a target block, because we need the former one to 

carry the latter one in the permutation to reduce the distance 

between the pair of two target blocks. For example, in Table 1 

of Fig. 4, the assistant block “**01” covers the target block 

“0*01”, so the size of the assistant block cannot be less than the 

size of the target block.                                                              ■ 
Before introducing Lemmas 2 and 3, let us use Fig. 7 to 

illustrate how to find a pair of assistant blocks for a given pair 

of target blocks by deducing the Boolean representations. 

Suppose that there is a pair of target blocks Target Block 1 and 

Target Block 2. Without loss of generality, we assume that 

these two target blocks have wildcards in the bits 𝑊1, ⋯ ,𝑊𝑀, 

the same values in the bits 𝑋1, ⋯ , 𝑋𝑁, and different values in 

the bits 𝑌1, ⋯ , 𝑌𝐷 . According to the definition in Section V, 

their distance is 𝐷, and there should be one target block covered 

by one assistant block. Let us assume that it is Target Block 1 

covered by Assistant Block 1. Then, Assistant Block 1 should 

have the same values as Target Block 1 in 𝑌1, ⋯ , 𝑌𝐷 (we will 

prove later in Lemma 2 that these bits cannot be wildcards). 

The other bits of Assistant Block 1 can be wildcards or the same 

values as Target Block 1. In the figure, they are all filled with 

wildcards. The next step is to deduce Assistant Block 2, the one 

to be swapped with Assistant Block 1. To merge the two target 

blocks, we need to reduce their distance to one, which requires 

the two assistant blocks to have same value in one bit among 

𝑌1, ⋯ , 𝑌𝐷 and different values in the remaining (𝐷 − 1) bits. In 

this figure, we assume that the two assistant blocks are the same 

in 𝑌𝐷. Finally, we get a pair of assistant blocks.  

Lemma 2: For a given pair of target blocks, if they have D 

different non-wildcard bits in the Boolean representations, then 

none of these D bits of their assistant blocks can be a wildcard. 

Proof: This lemma is needed to prove Lemma 3. We prove it 

by contradiction, using the example in Fig. 7. If a wildcard 

appears in any bit of 𝑌1, ⋯ , 𝑌𝐷−1 of the assistant blocks, e.g., 𝑌1 

of Assistant Block 1(a) and Assistant Block 2(a), then 𝑌1  of 
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Target Block 1 will keep unchanged and this target block will 

be transformed to Block 1(a). Because the distance of Block 1(a) 

and Target Block 2 is not 1, we cannot directly merge them. If 

there is a wildcard in 𝑌𝐷, as shown in Assistant Block 1(b) and 

Assistant Block 2(b), then Target Block 1 and Target Block 2 

will both be moved and turned to Block 1(b) and Block 2(b), 

respectively. Obviously, Block 1(b) and Block 2(b) cannot be 

directly merged. So far, we have proved Lemma 2.                     ■ 
 

Bit Positions

Target Block 1

Target Block 2

Assistant Block 1

Assistant Block 2

            Block 1(a)

Assistant Block 1(a)

Assistant Block 2(a)

Block 1(b)

Block 2(b)

Assistant Block 1(b)

Assistant Block 2(b)

L=M+N+D

W1  ∙∙∙  WM     X1  ∙∙∙  XN       Y1   Y2  ∙∙∙ YD-1  YD 

  *   ∙∙∙   *          1   ∙∙∙   1          1     1   ∙∙∙   1    1 

  *   ∙∙∙   *          1   ∙∙∙   1          0     0   ∙∙∙   0    0 

  *   ∙∙∙   *          *   ∙∙∙   *          1     1   ∙∙∙   1    1 

  *   ∙∙∙   *          *   ∙∙∙   *          0     0   ∙∙∙   0    1 

  *   ∙∙∙   *          1   ∙∙∙   1          1     0   ∙∙∙   0    1 

  *   ∙∙∙   *          *   ∙∙∙   *          *     1   ∙∙∙   1    1 

  *   ∙∙∙   *          *   ∙∙∙   *          *     0   ∙∙∙   0    1 

  *   ∙∙∙   *          1   ∙∙∙   1          0     0   ∙∙∙   0    1 

  *   ∙∙∙   *          1   ∙∙∙   1          1     1   ∙∙∙   1    0 

  *   ∙∙∙   *          *   ∙∙∙   *          1     1   ∙∙∙   1    * 

  *   ∙∙∙   *          *   ∙∙∙   *          0     0   ∙∙∙   0    * 
 

 

Fig. 7.   Scenarios of deducing Boolean representations of assistant blocks 

Lemma 3: 𝑊𝑝 ≤ (𝐿 − 𝐷). 

Proof: Lemma 3 points out the upper bound of the assistant 

block size. Again, we use the target blocks in Fig. 7 as an 

example to prove this lemma. Based on Lemma 2, none of the 

bits 𝑌1, ⋯ , 𝑌𝐷 of the assistant blocks can be a wildcard. So the 

largest assistant blocks are those blocks whose 𝑊1, ⋯ ,𝑊𝑀 and  

𝑋1, ⋯ , 𝑋𝑁 are all wildcards and 𝑌1, ⋯ , 𝑌𝐷 are all non-wildcards. 

Thus we know that the maximum assistant block size is 

(𝑀 + 𝑁) = (𝐿 − 𝐷) wildcards.                                               ■ 

Property 3: In packet classification, it holds that: 

0 ≤ 𝑊𝑝 ≤ (𝐿 − 2) = 102 

Property 3 is an extension of Property 2. In packet 

classification, L = 104 ; according to Table II, D ≥ 2 . So, 

W𝑝 ≤ (𝐿 − 𝐷) ≤ (𝐿 − 2) = 102. In Boolean Space, a block 

should contain at least one rule element. Therefore, we have 

W𝑝 ≥ 𝑊𝑡 ≥ 0 wildcards.  

C. BP Algorithm 

In this section, we propose the heuristic BP algorithm to 

compress classifiers. Our intention is to develop a practical 

algorithm with reduced computational complexity to find an 

approximation solution, by taking advantage of the 

aforementioned properties and lemmas and some predefined 

parameters. As shown in Fig. 8, the BP algorithm reads in a 

classifier and then recursively finds and performs permutations; 

after a predefined number of rounds have been completed, it 

will output a compressed classifier. The overall process 

consists of two phases: the direct logic optimization phase 

(Line 15) and the permutation phase (Lines 16-32).  

In the direct logic optimization phase, we directly apply logic 

optimization on the original classifier to group adjacent rule 

elements. This is to reduce the number of rules that will be 

involved in the permutation phase and, hence, reduce the 

computation complexity.  

 

Fig. 8. Pseudo code of  the BP classifier compression algorithm 
 

In the permutation phase, we recursively find and perform 

permutations on the classifier. We use the parameter 𝑁𝑟  to 

control the number of iteration rounds. According to the 

original idea of block permutation, we expect to find and 

execute only one permutation in each round of iteration. After 

the whole process is completed, we will have executed a series 

of permutations. Because a permutation requires a pair of target 

blocks and a pair of assistant blocks, the algorithm in each 

round uses three steps to find target blocks (Line 19) and 

assistant blocks (Lines 20-22), and then execute the 

permutation found (Lines 23-26). According to Property 1, a 

large assistant block leads to low overhead. So we always 

choose the largest possible assistant blocks. In each round of 

iteration, we start from the largest possible blocks, whose sizes 

are decided by 𝑊𝑚𝑎𝑥  based on Property 3 (Line 10), to the 

smallest allowed blocks, whose sizes are decided by a 

predefined factor 𝑊𝑚𝑖𝑛. If we cannot find a permutation under 

the current constraint of the assistant block size, we will try a 

1. Function BP_CLASSIFIER_COMPRESS(𝐶0,𝑁𝑟,𝑊𝑚𝑖𝑛,𝑁𝑡𝑝) 

2. Input: 

3.           Original classifier  𝐶0 in 𝐿-dimension Boolean Space; 

4.           Number of rounds 𝑁𝑟; 

5.           Minimum assistant block size 𝑊𝑚𝑖𝑛 (wildcards); 

6.           Maximum number of target block pairs to be 

considered in each round 𝑁𝑡𝑝; 

7. Output: 

8.           Compressed classifier 𝐶1; 

9. Constant: 

10.           Maximum assistant block size 𝑊𝑚𝑎𝑥 = (𝐿 − 2); 
11. Variable: 

12.           A set of target block pairs 𝑆𝑇1; 

13.           A pair of assistant blocks 𝐴1; 

14. Begin 

15.   𝐶1 = 𝐷𝐼𝑅𝐸𝐶𝑇_𝐿𝑂𝐺𝐼𝐶_𝑂𝑃𝑇𝐼𝑀(𝐶0); 
16.   𝐟𝐨𝐫 𝑟𝑜𝑢𝑛𝑑 = 0 to (𝑁𝑟 − 1) 𝐝𝐨  

17.        𝐟𝐨𝐫 𝑊𝑝 = 𝑊𝑚𝑎𝑥 to 𝑊𝑚𝑖𝑛 𝐝𝐨 

18.              𝑆𝑇1 = ∅;  𝐴1 = ∅; 

19.              𝑆𝑇1 = 𝐹𝐼𝑁𝐷_𝑇𝐴𝑅𝐺𝐸𝑇(𝐶1,𝑊𝑝, 𝑁𝑡𝑝); 

20.              𝐢𝐟 𝑆𝑇1 ≠ ∅ 𝐭𝐡𝐞𝐧  

21.                    𝐴1 = 𝐹𝐼𝑁𝐷_𝐴𝑆𝑆𝐼𝑆𝑇𝐴𝑁𝑇(𝐶1,𝑊𝑝, 𝑆𝑇1); 

22.              end if 

23.              𝐢𝐟 𝐴1 ≠ ∅ 𝐭𝐡𝐞𝐧  

24.                    𝐶1 = 𝐸𝑋𝐸𝐶𝑈𝑇𝐸_𝑃𝐸𝑅𝑀(𝐶1, 𝐴1); 
25.                    break;  

26.              end if 

27.        end for 

28.        𝐢𝐟 𝐴1 == ∅ then  

29.               return 𝐶1; 

30.        end if 

31.    end for  

32.    return 𝐶1; 

33. End 
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smaller size, until reaching 𝑊𝑚𝑖𝑛 . The algorithm terminates 

when either of the following two conditions are met: (1) the 

algorithm has run for 𝑁𝑟 rounds, or (2) the algorithm cannot 

find a valid pair of assistant blocks to swap in the current round. 

Next, we will explain the three functions that are called in each 

round of the permutation phase.  

1) FIND_TARGET 

 

Fig. 9.   Pseudo code of  the FIND_TARGET function 
 

The purpose of the FIND_TARGET function is to find out 

all possible target block pairs based on the input parameters. As 

shown in Fig. 9, this function examines all rule pairs to check (1) 

if a rule pair meets the conditions of “Target Blocks” in Table II 

(Lines 12-14); (2) if their sizes satisfy Property 2 (i.e., not 

larger than 𝑊𝑝  as shown in Lines 15-17); (3) whether their 

distance satisfies Property 2 (actually we need to do this only if 

the distance is equal to (𝐿 −𝑊𝑝) as shown in Lines 18-20 

based on Lemma 4 which will be explained soon). Only if a pair 

of rules meets all these three constraints should we consider it 

as a pair of target blocks. These constraints can largely reduce 

the number of target block pairs that need to be considered in 

each round of iteration, hence reducing the computational 

complexity. We use the parameter 𝑁𝑡𝑝 to limit the number of 

target block pairs. If there are too many target blocks found, we 

report only the first 𝑁𝑡𝑝 pairs. 

Lemma 4: In FIND_TARGET function, constraints 𝐷 =

(𝐿 −𝑊𝑝)  and 𝐷 ≤ (𝐿 −𝑊𝑝)  are equivalent in finding 

permutations. To reduce the computation complexity, we can 

consider only the target block pairs that satisfy 𝐷 = (𝐿 −𝑊𝑝). 

Proof: According to Property 2, we have 𝑊𝑝 ≤ (𝐿 − 𝐷), 

which can be rephrased as D ≤ (𝐿 −𝑊𝑝). Suppose that there 

are two pairs of target blocks 𝑡𝑝𝑎𝑖𝑟1  and 𝑡𝑝𝑎𝑖𝑟2  in the current 

input classifier 𝐶1 . Suppose the block distances in 𝑡𝑝𝑎𝑖𝑟1  and 

𝑡𝑝𝑎𝑖𝑟2 are 𝐷1 and 𝐷2, respectively. Without loss of generality, 

we assume 𝐷1 < 𝐷2 . Because we gradually decrease 𝑊𝑝  to 

search target blocks, if we set the constraint as D = (𝐿 −𝑊𝑝), 

we will report 𝑡𝑝𝑎𝑖𝑟1 when 𝑊𝑝 goes down to satisfy 𝑊𝑝 = (𝐿 −

𝐷1); if we set the constraint as D ≤ (𝐿 −𝑊𝑝), when 𝑊𝑝 = (𝐿 −

𝐷1), we have 𝑊𝑝 > (𝐿 − 𝐷2), which violates Lemma 2, so we 

cannot report 𝑡𝑝𝑎𝑖𝑟2, only 𝑡𝑝𝑎𝑖𝑟1. If we can find assistant blocks 

for 𝑡𝑝𝑎𝑖𝑟1 , we will execute a permutation and get a new 

classifier to run next round. If we cannot find assistant blocks 

for 𝑡𝑝𝑎𝑖𝑟1 , we will continue to decrease 𝑊𝑝  and eventually 

report 𝑡𝑝𝑎𝑖𝑟2 , no matter if the constraint is D = (𝐿 −𝑊𝑝) or 

D ≤ (𝐿 −𝑊𝑝). So far, whether the constraint is set to D ≤ (𝐿 −

𝑊𝑝) or D = (𝐿 −𝑊𝑝), we always get the same result. Hence, 

Lemma 4 is proved.                                                                  ■ 

2) FIND_ASSISTANT 

If the target block set returned by the FIND_TARGET 

function is not empty, the BP algorithm will continue to run the 

FIND_ASSISTANT function to find the corresponding 

assistant block pairs. As shown in Fig. 10, FIND_ASSISTANT 

will find all possible assistant blocks whose size is equal to the 

input parameter 𝑊𝑝 for each pair of target blocks (Lines 12-16). 

Then it will evaluate the compression effect of each pair of 

assistant blocks and choose only the one that can reduce the 

most number of rules (Line 17). 

 
Fig. 10. Pseudo code of  the FIND_ASSISTANT function 

The function of finding assistant blocks for a given pair of 

target blocks is implemented in the SUB_FIND_ASSIST 

sub-function (Line 14). Its main idea is to deduce the Boolean 

representations of assistant blocks from the Boolean 

representations of the given target blocks (this method has been 

shown in the proof of Lemma 2). According to Lemma 5, we 

1. Function FIND_TARGET(𝐶1, 𝑊𝑝, 𝑁𝑡𝑝) 

2. Input: 

3.           A Classifier  𝐶1 with 𝑁1 rules in 𝐿-dimension Boolean 

Space; 

4.           Expected assistant block size 𝑊𝑝 (wildcards); 

5.           Maximum number of target block pairs to be 

considered in each round 𝑁𝑡𝑝; 

6. Output: 

7.           A set of target block pairs 𝑆𝑇1;  

8. Begin 

9.   𝑆𝑇1 = ∅; M=0; 

10.   𝐟𝐨𝐫 rule 𝑖 = 0 to (𝑁1 − 1) 𝐝𝐨  

11.        𝐟𝐨𝐫 rule 𝑗 = i + 1 to (𝑁1 − 1) 𝐝𝐨  

12.              if Pair(𝑖, 𝑗) cannot be a pair of target blocks then 

13.                       break; 

14.              end if 

15.              if the sizes of rule 𝑖 and j are larger than 𝑊𝑝 then 

16.                       break; 

17.              end if 

18.              if the distance D(𝑖, 𝑗) ≠ (𝐿 −𝑊𝑝) then 

19.                       break; 

20.              end if 

21.             𝑆𝑇1 = 𝑆𝑇1 + Pair(𝑖, 𝑗); M=M+1; 

22.             if M == 𝑁𝑡𝑝 then 

23.                  return 𝑆𝑇1; 

24.             end if 

25.        end for 

26.    end for  
27.    return 𝑆𝑇1; 

28. End 

1. Function FIND_ASSISTANT(𝐶1, 𝑊𝑝, 𝑆𝑇1) 

2. Input: 

3.           A Classifier  𝐶1; 

4.           Expected assistant block size 𝑊𝑝 (wildcards); 

5.           A set of target block pairs 𝑆𝑇1; 

6. Output: 

7.           A pair of assistant blocks 𝐴1;  

8. Variable: 

9.           Sets of Assistant block pairs 𝑆𝐴1 and  𝑆𝐴2; 

10. Begin 

11.   𝑆𝐴1 = ∅;  

12.   𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 pair of target blocks 𝑡𝑝𝑎𝑖𝑟 ∈ 𝑆𝑇1 do 

13.        𝑆𝐴2 = ∅; 

14.        𝑆𝐴2 = SUB_FIND_ASSIST(𝐶1,𝑊𝑝, 𝑡𝑝𝑎𝑖𝑟) ; 

15.        𝑆𝐴1 = 𝑆𝐴1 + 𝑆𝐴2; 

16.    end for  

17.     𝐴1 = SUB_EVALUATE_ASSIST(𝑆𝐴1) ; 
18.    return 𝐴1; 

19. End 
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can find 2 ∗ (𝐿 −𝑊𝑝)  pairs of assistant blocks for a given 

target block pair. 

Lemma 5: In the SUB_FIND_ASSIST sub-function, we can 

find exactly  2 ∗ (𝐿 −𝑊𝑝) pairs of assistant blocks for each 

given target block pair. 

Proof: Without loss of generality, we still use the examples 

in Fig. 7 to prove this Lemma. When the distance of two target 

blocks is 𝐷  bits, we need to inverse (D − 1)  bits among 

𝑌1, ⋯ , 𝑌𝐷 of one of the target blocks to shorten their distance to 

1. There are 2𝐷 possible operations. A pair of assistant blocks 

can be obtained in correspondence to each of the possible 

inversing operations. According to Lemma 4, 𝐷 = (𝐿 −𝑊𝑝). 

Therefore, we can find exactly 2𝐷 = 2 ∗ (𝐿 −𝑊𝑝)  pairs of 

assistant blocks.                                                                        ■ 

R1:  0000   Accept

R2:  0011   Accept

R3:  11*0   Accept

Assistant Block Pairs Merge Split Delta

Classifier C

**11 <> **10 1 -12

**11 <> **01 1 0

**00 <> **01 1 -12

**00 <> **10 1 0

1

1

R4:  ****   Deny

Assistant block evaluation for target blocks R1 and R2

A1:  

A2:  

A3:  

A4:  
 

Fig. 11. Evaluating assistant blocks  

The SUB_EVALUATE_ASSIST (Line 17) evaluates all the 

assistant block pairs and chooses the “best” one. There are two 

situations that we need to consider when swapping a pair of 

assistant blocks in a permutation. First, swapping a pair of 

assistant blocks may merge more than one pair of target blocks; 

thus a permutation can reduce multiple rules. For example, 

Permutation 1 in Fig. 4 can reduce two rules. Second, a 

permutation may also break some existing blocks, leading to 

more rules. Thus we define the following metric delta to 

evaluate assistant blocks. We choose a pair of assistant blocks 

only if its delta is a positive number.  

𝑑𝑒𝑙𝑡𝑎 = # 𝑜𝑓 𝑟𝑢𝑙𝑒𝑠 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 − # 𝑜𝑓 𝑟𝑢𝑙𝑒𝑠 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 

The way to estimate the number of rules reduced for a given 

pair of assistant blocks is by checking all possible rule pairs in 

the current classifier to see if any of them can be a target block 

pair of the given assistant blocks, based on the conditions in 

Table II. To estimate the number of rules created, we scan all 

the rules in the current classifier to see if any wildcard in their 

Boolean representations would be affected by swapping the 

given assistant blocks. Fig. 11 is an example of evaluating 

assistant blocks. In this example, we list four pairs of assistant 

blocks for the target block pair 𝑅1 and 𝑅2. All these assistant 

blocks can merge 𝑅1 and 𝑅2, resulting in one rule reduced. But 

among these assistant blocks, 𝐴1  and 𝐴3  will split 𝑅3  and 

create two rules, while 𝐴2 and 𝐴4 will not. For example, 𝑅3 is 

made up of “1110” and “1100”. If we choose 𝐴1 to swap, then 

“1100” will be changed to “1101”, which cannot be merged 

with “1110”, resulting in two new blocks while 𝑅3 disappears. 

Therefore, we choose 𝐴2 or 𝐴4. 

3) EXECUTE_PERM 

The function of EXECUTE_PERM (Line 24 in Fig. 8) is the 

last step of each round of the BP algorithm. This function will 

be called to execute a permutation if the previous step can 

return a pair of assistant blocks. To execute a permutation, the 

BP algorithm will first scan the current classifier to change the 

Boolean representations of the rules affected by swapping 

assistant blocks; second, it will compare rules; if any pair of 

rules meets the condition of “Merging” in Table II, then the 

algorithm will merge them into one rule. 

Fig. 12 gives the details of how the BP algorithm works on 

the example in Fig. 4. In this example, the dimension of 

Boolean Space 𝐿 is 4. Based on Property 3, we try assistant 

block size 𝑊𝑝 from 2 wildcards to 0 wildcards in each round. 

The process is completed in two rounds. In the first round, 

when 𝑊𝑝 = 2, we find four pairs of target blocks and sixteen 

pairs of assistant blocks (only four pairs of assistant blocks 

associated with the first target block pair are shown in the figure 

due to the limited space). These four assistant block pairs can 

provide the same delta. Among them, we randomly select one 

pair, say "11 ∗∗<> 01 ∗∗ ", to execute the permutation and get 

the compressed Classifier 1. In the second round, when 𝑊𝑝 = 2, 

we find only one pair of target blocks and four pairs of assistant 

blocks. Because all the four pairs of assistant blocks contribute 

to the same delta, we simply perform " ∗∗ 01 <>∗∗ 11" and 

then get Classifier 2, which is the final result. 

D. Complexity 

As we analyzed in Section IV, the Block Permutation 

problem is NP-hard and cannot be solved in polynomial time. 

The proposed BP algorithm can provide sub-optimal 

compression results with a relatively low run-time complexity. 

On one hand, the BP algorithm can provide sub-optimal 

results because (1) it searches assistant blocks starting from the 

largest possible size 𝑊𝑚𝑎𝑥 = (𝐿 − 2)  to make sure the 

permutation overhead is as low as possible; (2) it puts a cap on 

the minimum assistant block size 𝑊𝑚𝑖𝑛  so that the overhead 

involved in each permutation can be upper bounded; (3) we 

define a metric called delta to make sure that each permutation 

can actually reduce the number of rules. 

On the other hand, we limit the run-time complexity of the 

BP algorithm in three ways: (1) unlike brute-force, which does 

not consider rule distribution, the BP algorithm is sensitive to 

rule distribution. If the rule distribution is dense, a case in 

which it is unnecessary to apply the BP technique, the BP 

compression process will finish quickly; (2) we use a series of 

properties and lemmas to reduce the computation; (3) we also 

provide a method to manually control the run-time complexity 

by introducing the parameters of 𝑁𝑟 and 𝑁𝑡𝑝.  

Now, let us estimate the worst case run-time complexity of 

the BP algorithm. Suppose that the classifier (after the direct 

logic optimization phase) contains 𝑁 ternary string rules.  

The worst case run-time of the BP algorithm in Fig. 8 is: 

𝑇𝐵𝑃 = ∑ [(𝑊𝑚𝑎𝑥 −𝑊𝑚𝑖𝑛 + 1)(𝑇1(𝑖) + 𝑇2(𝑖)) + 𝑇3(𝑖)]

𝑁𝑟−1

𝑖=0

 

             < ∑ [𝐿(𝑇1(𝑖) + 𝑇2(𝑖)) + 𝑇3(𝑖)]
𝑁𝑟−1
𝑖=0  

Where, 𝐿  is constant; 𝑇1(𝑖) , 𝑇2(𝑖) , and 𝑇3(𝑖)  is the worst 

case run-times of FIND_TARGET, FIND_ASSISTANT, and 

EXECUTE_PERM in the 𝑖𝑡ℎ round,  respectively.  Please  note  
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R2:   0001 Accept

R3:   0010 Accept

R4:   1110 Accept

R5:   **** Deny

R1:   1101 Accept

Original Classifier

R1 and R2

Target Blocks

R1 and R4

R2 and R3

R3 and R4

11** <> 01**

11** <> 10**

Assistant Blocks

00** <> 10**

00** <> 01**

Only show the assistant 

blocks for  R1 and R2

Round 1

R7:   0*10 Accept

R5:   **** Deny

R6:   0*01 Accept

Classifier 1

R6 and R7

Target Blocks

**01 <> **11

**01 <> **00

Assistant Blocks

**10 <> **00

**10 <> **11

Round 2

R5:   **** Deny

R8:   0*1* Accept

Classifier 2

 

Fig. 12. A complete example of applying the BP algorithm 

 

that EXECUTE_PERM is called only once because only one 

permutation is executed in each round. 

In the worst case, each round can reduce only one rule, so in 

the 𝑖𝑡ℎ  round, the number of rules is 𝑁1(𝑖) = 𝑁 − 𝑖 ; the 

number of rule pairs is 𝑁2(𝑖) = 𝑁1(𝑖)[𝑁1(𝑖) + 1]/2. Because 

𝐿 is constant, the run-time complexity of checking the Boolean 

representation of a rule can be considered a constant value. So, 

the worst case run-time of FIND_TARGET is: 

𝑇1(𝑖) = O(𝑁2(𝑖)) 

For FIND_ASSISTANT, based on Lemma 5, the maximum 

number of assistant block pairs found is 𝑁3(𝑖) =

2(𝐿 −𝑊𝑝)𝑁𝑡𝑝 < 2𝐿𝑁𝑡𝑝. From the proof of Lemma 5, we can 

also know that the run-time of Lines 12-16 in Fig. 10 is 

𝑇21(𝑖) < 2𝐿𝑁𝑡𝑝; and for SUB_EVALUATE_ASSIST in Line 

17, its run-time 𝑇22(𝑖) = 𝑂(𝑁2(𝑖))𝑁3(i) + O(𝑁1(𝑖))𝑁3(𝑖) . So, 

the worst case run-time complexity of FIND_ASSISTANT is: 

𝑇2(𝑖) = 𝑇21(𝑖) + 𝑇22(𝑖) < (𝑂(𝑁1(i) + 𝑁2(i)) + 1)2𝐿𝑁𝑡𝑝 

The worst case run-time of EXECUTE_PERM is: 

𝑇3(𝑖) = O(𝑁1(𝑖)) + 𝑂(𝑁2(𝑖)) =  𝑂(𝑁1(i) + 𝑁2(i)) 

Based on all the analyses, we can finally deduce that the 

worst case run-time of BP algorithm is 

𝑇𝐵𝑃 = O(𝑁𝑟𝑁𝑡𝑝𝑁
2) 

This means that once the 𝑁𝑟 and 𝑁𝑡𝑝 have been decided, the 

worst case run-time complexity of BP algorithm is 𝑂(𝑁2). 
Though the complexity has been reduced to “polynomial-time”, 

in some cases the run-time may be still too long due to the large 

coefficients, especially when 𝐿 = 104 . One strategy is to 

reduce parameters like 𝑁𝑟 and 𝑁𝑡𝑝, but this may sacrifice the 

compression performance. So, a good tradeoff between 

run-time and compression is needed in real applications. When 

N becomes larger, because of the large coefficients, the 

rum-time may still grow quickly. For large classifiers, we can 

consider a method called Classifier Partitioning to reduce the 

run-time complexity by partitioning a large classifier into 

several small parts and then applying BP to each part. Based on 

Cauchy's Inequality, our preliminary suggestion is to partition 

the classifier as evenly as possible to get the minimum total 

run-time of all sets. After partitioning, while run-time is 

reduced, we can get a better compression. This is because if we 

keep the same 𝑁𝑡𝑝 on the original classifier for all parts, in each 

round, we can actually consider more target block pairs in total. 

We do not suggest partitioning a classifier to very small parts, 

because this would lessen the chance of finding target blocks. 

The parts can be processed in parallel to further save time.  

VI. IMPLEMENTING PERMUTATIONS 

As we have explained, when the classifier is compressed by a 

series of permutations, correspondingly we need to apply the 

same permutations to the incoming packet headers. Circuit size 

and throughput performance are the two major performance 

metrics we have to consider when implementing the 

permutations. In this section, we first introduce the basic 

methodology of designing the permutation logic circuit without 

considering throughput performance, and then propose a 

scheme called stage-grouping to achieve a tradeoff between 

circuit size and throughput. 

A.  Basic Methodology 

If not considering performance, we can design an optimized 

circuit (i.e., with minimal size), by deducing and simplifying 

the final Boolean equations for a series of permutations. 

11**<>01**

Permutation  (1)

**01<>**11

Permutation  (2) Final Equation

Substitute (1) into (2)

 

Fig. 13. Boolean equations of the two permutations in Fig. 4 

Fig. 13 provides the Boolean equations of the two 

permutations used in Fig. 4. We can see that each equation in a 

permutation can always be implemented by one XOR gate.  

Given a packet header, we can calculate the transformed values 

of W, X, Y, and Z bits by using the two equations in series. We 

can also substitute the equations of Permutation (1) into those 

of Permutation (2) to get a single set of final equations, with 

which we can directly calculate the transformed value of the 

packet header. For a general case, there is a method to easily 

deduce the final equations. Let us suppose that in a permutation, 

we swap two assistant blocks that have same values in bit 

positions 𝑋1, ⋯ , 𝑋𝑚 , have different values in bit positions 

𝑌1, ⋯ , 𝑌𝑛, and have wildcards in other bit positions. And we 

denote their Boolean representations as"𝑎1⋯𝑎𝑚𝑏1⋯𝑏𝑛 ∗ ⋯∗

" and "𝑎1⋯𝑎𝑚𝑏1̅⋯𝑏𝑛̅̅ ̅ ∗ ⋯ ∗ " ("𝑏̅" is the inverse of "𝑏"). In 

the permutation, only the 𝑌1, ⋯ , 𝑌𝑛 bits of the incoming packet 

header will be changed. Assuming that the value of the  

𝑋1, ⋯ , 𝑋𝑚, 𝑌1, ⋯ , 𝑌𝑛  bits of the incoming packet header is 

𝑐1, ⋯ , 𝑐𝑚, 𝑑1, ⋯ , 𝑑𝑛  respectively, and after the permutation, 

their 𝑌1, ⋯ , 𝑌𝑛 bits will be changed to  𝑑1
′ , ⋯ , 𝑑𝑛

′ , respectively, 

we use the following Boolean equations to calculate the new 

values of 𝑌1, ⋯ , 𝑌𝑛 bits. 
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{
 

 𝑑1
′ = 𝑑1 ∙ 𝐹 + 𝑑1 ∙ 𝐹                           

⋮                 
⋮                 

  𝑑𝑛
′ = 𝑑𝑛 ∙ 𝐹 + 𝑑𝑛 ∙ 𝐹                            

 

Where, 𝐹 = 1 if 𝑐1⋯𝑐𝑚 = 𝑎1⋯𝑎𝑚  and d1⋯dn =

b1⋯bn 𝑜𝑟 𝑏1̅⋯𝑏𝑛̅̅ ̅; Otherwise, 𝐹 = 0. 

B.  Stage-Grouping Methodology 

For a given series of permutations, intuitively, we can use the 

pipeline structure to implement them in circuits. If there are N 

permutations, we can design an N-stage pipeline, with each 

stage implementing one permutation. A packet needs to 

traverse N stages with a delay of N clock cycles before entering 

the TCAM for the classification. Because each stage is simple 

enough, the pipeline can run at a high clock rate and thus 

provide a high throughput. One downside of using this pipeline 

stage is that it usually requires large hardware resources. 

An alternative solution to the pipeline is to use a 

combinational logic to implement all N permutations. This 

structure is a 1-stage pipeline solution, which is actually the 

same as the basic methodology that we have explained. 

Normally, a 1-stage pipeline requires much less hardware 

resources than an 𝑁-stage pipeline, because we can simplify 

the Boolean equations. However, the relatively high critical 

path delay, which would lower the clock rate, is a major 

concern when we use the 1-stage solution. 

 
Fig. 14. The methodology of stage-grouping 

Considering the pros and cons of both 1-stage and 𝑁-stage 

structures, we hereby propose a solution called stage-grouping, 

which is able to find the best number of stages to achieve a 

tradeoff between cost and speed. This method is to group 

consecutive pipeline stages together to reduce the number of 

pipeline stages. Each new stage implements multiple 

permutations, and the new Boolean function of each new stage 

can be derived by using the basic methodology. 

Fig. 14 shows the proposed solution of stage-grouping. The 

stage-grouping methodology constructs a pipeline by adding 

stages one by one. Based on greedy strategy, each stage is 

generated by grouping as many permutations as possible, as 

long as the targeted clock rate can be satisfied. 

Because the overall throughput of a pipeline is determined by 

the slowest stage(s), it is possible that some exceptionally 

complicated permutations would slow down the pipeline. To 

address this problem, a simple idea is to duplicate the 

bottleneck stage(s). Please note that only the bottleneck stage(s) 

rather than the whole pipeline need to be duplicated. So the 

extra overhead can be small while the throughput is improved. 

Another concern is that the implementation in reality would 

be limited by the capacity of FPGA built in the hardware 

system. So, we add a parameter 𝑆𝑚𝑎𝑥  in the stage-grouping 

methodology to limit the size of the pipeline. It is possible that 

𝑆 > 𝑆𝑚𝑎𝑥 before 𝑖 reaches 𝑁 (Line 14). As a result, only part of 

the permutations can be put into FPGA. In this case, we should 

store the corresponding intermediate classifier rather than the 

final classifier of BP compression into TCAM. 

VII. DISCUSSION 

In this section, we present the architecture in Fig. 15 for 

discussion, which is modified from that in Fig. 5 to support 

classifier updates and partitioning. As we have mentioned in 

previous sections, for a large classifier, we can partition it to 

several small parts and then apply BP on each individual part. 

Each partition requires one FPGA and one TCAM to 

implement. As for classifier incremental updates (e.g., inserting 

or deleting some rules), we use a small TCAM called Scratch 

TCAM with high priority to store scratch entries representing 

the difference between the new classifier and old classifier. As 

shown in Fig. 15, a small component called Priority Control is 

used to choose which action to be used. If a packet matches 

both the scratch TCAM and the partition(s), the action from the 

scratch TCAM will be finally reported. 

Preprocess
Compressed 

Classifier 
Packets Actions

(FPGA)

Scratch 

TCAM

(TCAM)

Partition 1

Preprocess
Compressed 

Classifier 
(FPGA)

(TCAM)

Partition 2

Priority 

Control

 
Fig. 15. Modified architecture for classifier update and partitioning 

When the system starts, the scratch TCAM is empty. To 

insert or delete rules, we compare the Karnaugh Tables of the 

new and old classifiers and generate the delta Karnaugh Table, 

inside which some points are changed to “Accept” or “Deny” 

and marked with “AC” or “DC”, and other points are not 

1. Methodology Stage-Grouping(𝑃1, 𝑃1, ⋯ , 𝑃𝑁, 𝑅𝑡, 𝑆𝑚𝑎𝑥) 

2. Input: 

3.           A series of permutations  𝑃1, 𝑃1, ⋯ , 𝑃𝑁; 

4.           Targeted clock rate 𝑅𝑡; 
5.            Maximum circuit size 𝑆𝑚𝑎𝑥; 

6. Output: 

7.           𝑀-stage pipeline 𝑃𝐿; 

8. Variable: 

9.          Current pipeline 𝑃𝐿0, 𝑃𝐿1; 

10.          Current clock rate 𝑅; 

11.          Current circuit size 𝑆; 

12. Begin 

13.   𝑀 = 0; S = 0; 𝑖 = 1; 𝑃𝐿 = ∅; 

14.   𝐰𝐡𝐢𝐥𝐞 (𝑖 ≤ 𝑁  &&  S < 𝑆𝑚𝑎𝑥) do 

15.        𝑃𝐿0 = 𝑃𝐿; 

16.        𝐟𝐨𝐫 ( 𝑗 = 𝑖; 𝑗 ≤ 𝑁; 𝑗 = 𝑗 + 1) do 

17.               Group permutations from 𝑃𝑖 to 𝑃𝑗 into a new stage, 

append this stage into 𝑃𝐿0 to form 𝑃𝐿1;  

18.               Synthesize 𝑃𝐿1, and get 𝑅, 𝑆; 

19.               𝐢𝐟 (𝑅 > 𝑅𝑡 &&  𝑆 < 𝑆𝑚𝑎𝑥) then     

20.                          𝑃𝐿 = 𝑃𝐿1; 

21.               else  𝑀 = 𝑀 + 1; 𝑖 = 𝑗; break; 

22.              end if 

23.         end for  

24.    end while 

25.    return 𝑀-stage pipeline 𝑃𝐿; 

26. End 
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changed and marked with “ANC” or “DNC”. Then by applying 

logic optimization to the “AC” points and “DC” points 

separately, we can get an optimized number of “AC” and “DC” 

rules (no default rule), which are then stored in the scratch 

TCAM. Note that the ”AC” (or “DC”) points can merge some 

“ANC” (or “DNC”) points to get a better optimization. The run 

time of logic optimization on the small delta Karnaugh Table is 

usually tiny. If an incremental update is required when the 

system is still active, two scratch TCAMs can be used 

alternatively. Because the scratch TCAM is relatively small, 

the duplication will not cost much. Note that the scratch TCAM 

will be searched directly using the original packet headers 

without permutation. When there are enough updates 

accumulated, we can do a complete BP compression to move 

everything into the main TCAMs and free up the scratch 

TCAM. Considering that BP compression and FPGA synthesis 

take time, we should start a new complete BP process earlier, 

before scratch TCAM becomes full. 

VIII. EXPERIMENTS 

A.  Experiment Setting 

Our experiments were based on one real-life firewall 

classifier and several artificial classifiers generated by using 

ClassBench [15]. We generated three typical types of artificial 

classifiers: Firewall (FW), Access Control List (ACL), and IP 

Chain (IPC). As Table III shows, the first eight classifiers vary 

in size from 60 to 660 rules. The average prefix expansion ratio 

of these classifiers is 1.91. The largest expansion is observed in 

classifier ipc-1, whose expansion ratio is 2.89, where 202 rules 

are expanded to 584 ternary strings (or TCAM entries). We 

specifically added two large classifiers. One is acl-4 containing 

1209 rules and expanding to 1725 TCAM entries. The other is 

acl-5 containing 3708 rules and expanding to 4880 TCAM 

entries. We partitioned acl-4 to two parts and acl-5 to four parts 

to test the performance of classifier partitioning. For 

convenience, we just tried to make the number of entries of the 

parts close after range expansion. A better partitioning should 

consider the entries after logic optimization. 

To evaluate the performance, we compared the BP technique 

with McGeer’s algorithm [14], which is the first bit-level 

scheme. As shown in Fig. 2, McGeer’s algorithm uses direct 

logic optimization (called Heuristic 1) and a process based on 

the first-matching property (called Heuristic 2) to reduce 

entries. BP does not use the first-matching property, so it can be 

combined with McGeer’s algorithm. For each classifier, we 

first applied direct logic optimization, then we applied (1) 

Heuristic 2; and (2) the BP compression algorithm followed by 

Heuristic 2. Because Heuristic 2 would change the classifier 

style, as required by Espresso [22]  and the BP program, that all 

rules are “Accept” except for the default rule as “Deny” (please 

note that a classifier will be changed to this style after being 

mapped to Boolean Space), we have to do it as the last step. We 

chose a sub-optimal solution, Espresso, for logic optimization, 

since it has been identified as an NP-hard problem [20]. 

We implemented the BP algorithm using C++ language and 

performed the compression experiments on our Linux 

workstation driven by Intel Xeon 2.0GHz E5335 CPUs. In 

packet classification, Boolean Space dimension 𝐿  is 104. 

Parameters were set to 𝑁𝑟 = 150 and 𝑊𝑚𝑖𝑛 = 54. 𝑁𝑡𝑝 was set 

to 3 for the first eight classifiers and to 1 for acl-4, acl-5 and 

their partitions. All the partitions were processed in parallel by 

multiple CPU Cores. In Table III, we provide the longest 

run-time of the partitions. With these data, we are also able to 

estimate the total run-time. According to the suggestion in [14], 

if McGeer’s Heuristic 2 cannot finish in 12 hours, we just stop 

it. Our targeted throughput was set to 100M packets per second. 

Based on that, we selected Altera Cyclone III FPGA [23]. We 

designed scripts to automatically generate Verilog codes based 

on the compression results, then synthesized them by using 

Quartus [23] on a Dell D630 laptop computer.  

B.  Classifier Compression 

In Table III, we present the experimental results of direct 

logic optimization, BP algorithm, and McGeer’s Heuristic 2. 

For the first eight classifiers, the BP compression process can 

reduce entries by 31.88% on average in addition to the 22.12% 

contributed by logic optimization; Applying McGeer’s 

Heuristic 2 over “BP output” can reduce 1.29% entries and over 

“logic optimization output” can reduce 7.86%.  

In the IPC classifiers, while block permutation can save 

53.93% of entries on average, direct logic optimization can 

barely give any compression. Especially in ipc-2, the 

compression of direct logic optimization is 0. The reason for 

this low compression rate in the direct logic optimization phase 

is that the rule distributions of the IPC classifiers are very 

“sparse”, so direct logic optimization can barely merge rules. 

This is what motivated our research on the BP technique.  

In the ACL classifiers, we always find that block 

permutation contributes much more compression than direct 

logic optimization does, a fact from which we can judge that the 

ACL classifiers also fall into “sparse” rule distributions. 

In the FW classifiers, we witness a compression ratio of 

61.23% on average by direct logic optimization. In these cases, 

the average compression ratio of block permutation is 6.84%, 

which is much smaller than that of direct logic optimization. 

The reason is that the rule distributions of the FW classifiers are 

quite “dense”, so direct logic optimization has good 

performance. In the real-life classifier real-1, because the 

classifier is closer to “dense” rule distribution than “sparse” 

rule distribution, direct logic optimization contributes a larger 

compression ratio than block permutation does.  In this case, 

however, block permutation can still reduce 83 entries.  

While bit-level schemes can yield good compression, 

run-time is a challenge. For example, from Table III we can see 

that McGeer’s Heuristic 2 takes hours to run. In many cases, it 

cannot generate any outcome within 12 hours. As for BP, we 

can make a tradeoff between run-time and compression 

performance. For the first eight classifiers, if we set 𝑁𝑡𝑝 to 1, 

the average run-time can be only 1.9 minutes, but the 

compression ratio would drop sharply to 21.13%. In contrast, 

we found that 𝑁𝑡𝑝 = 3  is a better tradeoff, with which the 

average run-time is 3.4 minutes and the compression is 31.88%. 

But for acl-4 and acl-5, with 𝑁𝑡𝑝 = 3, the run-time is too long.  
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TABLE III  

CLASSIFIER STATISTICS AND RESULTS FROM BP COMPRESSION EXPERIMENTS 

 

TABLE IV  
RESULTS FROM FPGA IMPLEMENTATION EXPERIMENTS 

 

So we set it to 1 at the cost of lower compression performance. 

In the experiments, we found that classifier partitioning is very 

effective in handling large classifiers. After partitioning, with 

the same 𝑁𝑡𝑝 = 1, the run-time of acl-4 can be further reduced 

to 18.52 minutes and the compression also be improved to 

28.64%. We also observed the similar effect on acl-5. This is 

because after partitioning, we can consider more target block 

pairs (one from each partition) in each round, as opposed to one 

pair considered by the original compression scheme. 

C.  FPGA Implementation 

In this section, we discuss our experiments on FPGA 

implementation. In the experiments, we evaluated the overhead 

of the BP technique, which covers two aspects: hardware cost 

and operation performance of packet classification. The results 

are presented in Table IV. 

For hardware cost, we used the concept of “Equivalent Gate 

Count” to estimate the actual hardware resource saved by using 

the BP technique (TCAM resource reduced minus FPGA 

resource consumed). From the TCAM chip ICFWTNM1 [19], 

we can estimate that the implementation of one TCAM bit 

requires about 20 transistors. Because a standard 2-input 

NAND gate consists of 4 transistors, we have the following 

equation:  

   𝑇𝐶𝐴𝑀 𝐺𝑎𝑡𝑒 𝐶𝑜𝑢𝑛𝑡 =
 # 𝑜𝑓 𝑒𝑛𝑡𝑟𝑖𝑒𝑠 ×104 𝑏𝑖𝑡𝑠 ×20 𝑡𝑟𝑎𝑛𝑠𝑖𝑠𝑡𝑜𝑟𝑠

4 𝑡𝑟𝑎𝑛𝑠𝑖𝑠𝑡𝑜𝑟𝑠
  

The Altera FPGA resource consumption is reported in 

Combinational Functions (CFs) and Registers. In the 

experiments, we calculate the FPGA gate count as follows:  

     𝐹𝑃𝐺𝐴 𝐺𝑎𝑡𝑒 𝐶𝑜𝑢𝑛𝑡 = # 𝑜𝑓 𝐶𝐹𝑠 × 3 + # 𝑜𝑓 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑠 × 6   

The throughput requirement of the packet classification 

operation was set to no less than 100M packets per second. 

Accordingly, the clock rate of the pipeline should be no less 

than 100MHz. As Table IV shows, on average we need to use 

around 20 pipeline stages to meet the timing requirement, and 

the actual average clock rate estimated is 111.24MHz, while the 

fastest clock rate is 135.85MHz. Based on this performance, the 

average gate count of FPGA consumption is only 23.45% of 

that of the TCAM resource saved in the permutation phase 

(please see Ratio-1 in Table IV). For a more accurate analysis, 

the TCAM saved in the direct logic optimization phase should 

be included, and then the average ratio of the FPGA overhead 

to the total TCAM saved by both direct logic optimization and 

block permutation can be as low as 17.59% (please see Ratio-2 

in Table IV). The FPGA overhead of the ACL classifiers is 

entries

reduced

compr

ratio

runtime

(sec)

entries

reduced

compr

ratio

runtime

(min)

# of

perms

entries

reduced

compr

ratio

runtime

(hour)

entries

reduced

compr

ratio

runtime

(hour)

fw-1 60 115 1.92 69 60.00% 0.33 12 10.43% 0.001 7 0 >0.00% >12 0 >0.00% >12

fw-2 132 277 2.10 173 62.45% 34.72 9 3.25% 0.02 9 0 >0.00% >12 0 >0.00% >12

acl-1 187 357 1.91 50 14.01% 0.18 146 40.90% 2.57 80 10 2.80% 2.71 57 15.97% 4.76
acl-2 217 271 1.25 1 0.37% 0.18 137 50.55% 0.84 125 0 0.00% 1.02 0 0.00% 2.02
acl-3 221 312 1.41 3 0.96% 0.56 99 31.73% 5.03 83 0 0.00% 10.58 0 >0.00% >12

ipc-1 202 584 2.89 14 2.40% 0.39 289 49.49% 5.68 89 31 5.31% 4.59 111 >19.01% >12

ipc-2 207 538 2.60 0 0.00% 0.26 314 58.36% 4.34 106 12 2.23% 1.54 150 27.88% 3.74

Real-life real-1 660 802 1.22 295 36.78% 1.45 83 10.35% 5.83 50 0 >0.00% >12 0 >0.00% >12

avg 235.75 407 1.91 75.63 22.12% 4.76 136.13 31.88% 3.04 6.63 1.29% 39.75 7.86%

acl-4 1209 1725 1.43 51 2.96% 2.18 183 10.61% 88.69 150 0 >0.00% >12 0 >0.00% >12

part-1 750 829 1.11 16 1.93% 0.84 188 22.68% 8.53 150 0 0.00% 8.7 0 >0.00% >12

part-2 459 896 1.95 26 2.90% 0.79 306 34.15% 18.52 150 31 >3.46% >12 50 >5.58% >12
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in total
1209 1725 42 2.43% 0.84 494 28.64% 18.52 31 >1.80% >12 50 >2.90% >12

acl-5 3708 4880 1.32 106 2.17% 3.27 266 5.45% 91.48 150 11 >0.23% >12 0 >0.00% >12
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in total
3708 4880 68 1.39% 1.12 1030 21.11% 21.47 121 >2.48% >12 188 >3.85% >12
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relatively high when compared to the TCAM saved. This is 

because the compressions are achieved by swapping relatively 

small permutations of blocks. To improve throughput, normally, 

we can use more stages. By this way, we can make each stage 

smaller and thus run at a higher clock rate. But the overall 

hardware cost will increase.  

Our way of implementing FPGA is to use the stage-grouping 

methodology in Fig. 14. During the implementation, we tried to 

pack as many permutations into one stage as possible before 

constructing the next one. As Line 20 in Fig. 14 indicates, we 

should add one permutation at a time to a stage. But in the 

experiments, to reduce the synthesis time, we have tried to add 

multiple permutations each time. On average, the 

implementation time is 42.39 minutes (the FPGA experiments 

were done on a laptop computer; the implementation time can 

be shorter if using a high performance computer).   

So far, in our experiments, we have shown that the proposed 

BP technique can significantly reduce TCAM entries while the 

overhead is much smaller than the resource saved. 

IX. CONCLUSION 

In this paper, we propose a new technique called Block 

Permutation (BP) to reduce the number of TCAM entries 

required to represent a classifier. The BP technique 

significantly improves the compression rate under the 

circumstances where direct logic optimization cannot perform 

effectively. The improvement is achieved by performing a 

series of permutations to change the distribution of rule 

elements in Boolean Space from sparse to dense, thus allowing 

more rules to be merged into each TCAM entry. The proposed 

BP is a new technique in that it searches for nonequivalent 

classifiers rather than equivalent ones, as previous schemes did. 

Because BP is a technique related to the common topic of logic 

optimization, it is not limited to the applications of packet 

classification and TCAM, but can also be applied to other 

hardware implementation-based applications. 
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