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Abstract—The emergence of new network applications, such
as the network intrusion detection system and packet-level ac-
counting, requires packet classification to report all matched rules
instead of only the best matched rule. Although several schemes
have been proposed recently to address the multi-match packet
classification problem, most of them require either huge memory
or expensive Ternary Content Addressable Memory (TCAM) to
store the intermediate data structure, or they suffer from steep
performance degradation under certain types of classifiers. In
this paper, we decompose the operation of multi-match packet
classification from the complicated multi-dimensional search to
several single-dimensional searches, and present an asynchronous
pipeline architecture based on a signature tree structure to com-
bine the intermediate results returned from single-dimensional
searches. By spreading edges of the signature tree across multiple
hash tables at different stages, the pipeline can achieve a high
throughput via the inter-stage parallel access to hash tables.
To exploit further intra-stage parallelism, two edge-grouping
algorithms are designed to evenly divide the edges associated with
each stage into multiple work-conserving hash tables. To avoid
collisions involved in hash table lookup, a hybrid perfect hash
table construction scheme is proposed. Extensive simulation using
realistic classifiers and traffic traces shows that the proposed
pipeline architecture outperforms HyperCuts and B2PC schemes
in classification speed by at least one order of magnitude, while
having a similar storage requirement. Particularly, with different
types of classifiers of 4K rules, the proposed pipeline architecture
is able to achieve a throughput between 26.8Gbps and 93.1Gbps
using perfect hash tables.

Index Terms—Packet Classification, Signature Tree, TCAM,
Hash Table.

I. INTRODUCTION

AS the Internet continues to grow rapidly, packet classi-
fication has become a major bottleneck of high-speed

routers. Most traditional network applications require packet
classification to return the best or highest-priority matched
rule. However, with the emergence of new network applica-
tions like Network Intrusion Detection System (NIDS), packet-
level accounting [1], and load-balancing, packet classification
is required to report all matched rules, not only the best
matched rule. Packet classification with this capability is
called multi-match packet classification [1] [2] [3] [4] [5],
to distinguish it from the conventional best-match packet
classification.
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Typical NIDS systems, like SNORT [6], use multi-match
packet classification as a pre-processing module to filter out
benign network traffic and thereby reduce the rate of suspect
traffic arriving at the content matching module [7] [8], which
is more complicated than packet classification, and usually can
not run at the line rate in the worst case situation. As a pre-
processing module, packet classification has to check every
incoming packet by comparing fields of the packet header
against rules defined in a classifier. To avoid slowing down the
performance of the NIDS system, packet classification should
run at the line rate in spite of the classifiers and traffic patterns.

Many schemes have been proposed in literature aiming at
optimizing the performance of packet classification in terms of
classification speed and storage cost; however, most of them
focus on only the best-match packet classification [9] [10] [11].
Although some of them could also be used for multi-match
packet classification, they suffer from either a huge memory
requirement or steep performance degradation under certain
types of classifiers [12] [13]. Ternary Content Addressable
Memory (TCAM) is well-known for its parallel search ca-
pability and constant processing speed, and it is widely used
in IP route lookup and best-match packet classification. Due
to the limitation of its native circuit structure, TCAM can only
return the first matching entry, and therefore can not be directly
used in multi-match packet classification. To enable the multi-
match packet classification on TCAM, some research works
published recently [2] [3] [4] [5] propose to add redundant
intersection rules in TCAM. However, the introduction of
redundant intersection rules further increases the already high
implementation cost of the TCAM system.

The objective of this paper is to design a high through-
put and memory efficient multi-match packet classification
scheme without using TCAMs. Given the fact that a single-
dimensional search is much simpler and has already been well
studied, we decompose the complex multi-match packet clas-
sification into two steps. In the first step, single-dimensional
searches are performed in parallel to return matched fields in
each dimension. In the second step, a well-designed pipeline
architecture combines the results from single-dimensional
searches to find all matched rules. Simulation results show that
the proposed pipeline architecture performs very well under
all tested classifiers, and is able to classify one packet within
every 2-10 time slots, where one time slot is defined as the
time for one memory access. Our main contributions in this
paper are summarized as follows:

1) We model the multi-match packet classification as a
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concatenated multi-string matching problem, which can
be solved by traversing a signature tree structure.

2) We propose an asynchronous pipeline architecture to
accelerate the traversal of the signature tree. By dis-
tributing edges of the signature tree into hash tables at
different stages, the proposed pipeline can achieve a very
high throughput.

3) We propose two edge-grouping algorithms to partition
the hash table at each stage of the pipeline into multiple
work-conserving hash tables, so that the intra-stage
parallelism can be exploited. By taking advantage of
the properties of the signature tree, the proposed edge-
grouping algorithms perform well in solving the location
problem, overhead minimization problem, and balancing
problem involved in the process of hash table partition.

4) We propose a hybrid perfect hash table construction
scheme, which can build perfect hash tables for each
stage of the pipeline structure, leading to an improved
performance in both classification speed and storage
complexity.

The rest of the paper is organized as follows. Section II
reviews the related work. Section III formally defines the
multi-match packet classification problem, and presents terms
to be used in the paper. Section IV introduces the concept
of signature tree, based on which Section V proposes an
asynchronous pipeline architecture. Section VI presents two
edge-grouping algorithms which are used to exploit intra-stage
parallel query. Section VII presents the hybrid perfect hashing
scheme. In Section VIII, we discuss implementation issues and
present the experimental results. Finally, Section IX concludes
the paper.

II. RELATED WORK

Many schemes have been proposed in literature to address
the best-match packet classification problem, such as Trie-
based schemes [9] [14], decision tree-based schemes [11] [12]
[15], TCAM-based schemes [16]–[24], and two-stage schemes
[14] [13] [19] [25].

Due to the high power consumption of TCAM, some
schemes are proposed to reduce it using one of the following
two ideas: (1) reducing the TCAM entries required to represent
a classifier by using range encoding [19] [20] [21] or logic
optimization [22] [23], or (2) selectively activating part of the
TCAM blocks when performing a classification [24]. Although
these schemes reduce the power consumption of TCAM, they
can not be directly applied to multi-match packet classification.
To enable the multi-match packet classification on TCAM,
[1] proposes several schemes that allow TCAM to return
all matched entries by searching the TCAM multiple times
after adding a discriminator field in TCAM. Consequently,
the power consumption and processing time increase linearly
when the number of entries matching a packet increases.
According to the results in [1] based on 112 Access Control
Lists (ACLs) and the SNORT rule set, the average number of
entries that one packet can potentially match is about 4 to 5.
So the power consumption and processing time of multi-match
packet classification can be 5 times higher than that of the best-
match packet classification. Some research works published

X

Y

X_RG1 X_RG2 X_RG3X_SG1 X_SG2 X_SG3 X_SG4 X_SG5

Rule 1 Rule 2
Rule 3 P

Y_SG1Y_SG2Y_SG3Y_SG4Y_SG5

Y_RG1
Y_RG2

Y_RG3

Fig. 1. Segment encoding vs. range encoding.

recently [2] [3] [4] [5] propose to add redundant intersection
rules in TCAM to support multi-match packet classification.
However, the introduction of redundant intersection rules
further increases the already high implementation cost of the
TCAM system.

In this paper, we focus on the two-stage schemes, in which
the multi-dimensional search of packet classification is first
decomposed into several single-dimensional searches, and then
the intermediate results of single-dimensional searches are
combined to get the final matched rule. To facilitate the
combination operation, each field of rules in the two-stage
schemes is usually encoded as either a range ID or several
segment IDs. Consider the classifier shown in Fig.1, which
has three 2-dimensional rules, each represented by a rectangle.
Ranges are defined as the projections of the rectangles along
a certain axis. For example, the projections of rules R1, R2,
and R3 along axis X form three ranges denoted by X RG1,
X RG3, and X RG2, respectively. In contrast, segments are
the intervals divided by the boundaries of projections.

With the segment encoding method, each rule is represented
by multiple segment ID combinations, which may cause a
serious storage explosion problem [14] [13]. Several schemes
[19] [25] have been proposed to address the storage explosion
problem by using TCAM and specially designed encoding
schemes. However, the use of TCAM increases the power
consumption and implementation cost, and more importantly,
they can only be used for the best-match packet classification.

With the range encoding method, the representation of each
rule requires only one range ID combination, and therefore the
storage explosion problem involved in the segment encoding is
avoided. The low storage requirement comes at a price of slow
query speed , which prevents the range encoding method from
being used in practical systems. To the best of our knowledge,
the only published two-stage classification scheme using range
encoding is B2PC [26], which uses multiple Bloom Filters to
accelerate the validation of range ID combinations. In order to
avoid the slow exhaustive validation, B2PC examines range ID
combinations according to a predetermined sequence, and re-
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turns only the first matched range ID combination, which may
not always correspond to the highest-priority matched rule due
to the inherent limitation of the B2PC scheme. Furthermore,
B2PC can not support multi-match packet classification.

III. PROBLEM STATEMENT

A classifier C is a set of N rules, sorted in descending
order of priorities. The priorities of rules are usually defined
by their rule IDs, where a smaller rule ID means a higher
priority. Each rule includes d fields, each of which represents a
range of a certain dimension. From a geometric point of view,
each rule represents a hyper-rectangle in the d-dimensional
space. Since each packet header corresponds to a point P in
the d-dimensional space, the problem of conventional best-
match packet classification is equivalent to finding the highest-
priority hyper-rectangle enclosing point P, while the problem
of multi-match packet classification is equivalent to finding all
hyper-rectangles enclosing point P.

In order to perform the multi-match packet classification
efficiently, given a classifier, we convert it to an encoded
counterpart by assigning each distinct range a unique ID on
each dimension. Given the classifier in Table I, its encoded
counterpart is shown in Table II, in which fij is the ID of
the jth unique range appearing on the ith dimension of the
classifier.

TABLE I
A CLASSIFIER WITH SEVEN RULES

Rule Src IP Dest IP Src Port Dest Port Prot

r1 128.238.147.3 169.229.16.* 135 * TCP
r2 128.238.147.3 169.229.16.* <1024 80 UDP
r3 128.238.147.3 169.229.16.* * 21 TCP
r4 128.238.147.3 169.229.16.* * 21 *
r5 169.229. 4.* 128.238.147.3 <1024 <1024 TCP
r6 128.238.147.3 169.229.4.* 110 80 TCP
r7 169.229.4.* * * 21 TCP

TABLE II
THE CLASSIFIER AFTER RANGE ENCODING

Rule Src IP Dest IP Src Port Dest Port Protocol

r1 f11 f21 f31 f41 f51
r2 f11 f21 f32 f42 f52
r3 f11 f21 f33 f43 f51
r4 f11 f21 f33 f43 f53
r5 f12 f22 f32 f44 f51
r6 f11 f23 f34 f42 f51
r7 f12 f24 f33 f43 f51

TABLE III
A PACKET TO BE CLASSIFIED

Src IP Dest IP Src Port Dest Port Protocol

128.238.147.3 169.229.16.2 135 21 TCP

Given a packet header and an encoded classifier with
d dimensions, the multi-match packet classification scheme
proposed in this paper consists of two steps. In the first
step, d relevant fields of the packet header are each sent

TABLE IV
RANGE IDS RETURNED BY SINGLE-DIMENSIONAL SEARCHES

Src IP Dest IP Src Port Dest Port Protocol

f11 f21 f31 f41 f51
f24 f32 f43 f53

f33 f44

to a single-dimensional search engine, where either prefix-
based matching or range-based matching will be performed
to return all matched range IDs. Consider a packet header
given in Table III: the range IDs returned from five single-
dimensional search engines are shown in Table IV, and can
form 1×2×3×3×2 = 36 different range ID combinations. S-
ince we have no idea in advance of which combinations among
the 36 appear in the encoded classifier, we have to examine
all 36 combinations, without exception, in the second step
to return all valid combinations. Since the single-dimensional
search problem has been well addressed in literature [27], in
this paper we focus on only the second step. In the remainder
of the paper, packet classification will specifically refer to this
second step unless special notation is given.

If we view each range ID as a character, the multi-
match packet classification problem could be modeled as a
concatenated multi-string matching problem. In this problem,
the encoded classifier could be regarded as a set of strings
with d characters. From the encoded classifier, we can get d
universal character sets, each of which includes characters in
one column of the encoded classifier. The set of range IDs
returned by each single-dimensional search engine is called a
matching character set, which is a subset of the correspond-
ing universal character set. The concatenated multi-string
matching problem is to identify all strings in the encoded
classifier which could be constructed by concatenating one
character from each of d matching character sets. The main
challenge of the concatenated multi-string matching problem
is to examine a large number of concatenated strings at an
extremely high speed to meet the requirement of high-speed
routers.

IV. SIGNATURE TREE

To facilitate the operation of concatenated multi-string
matching, we present a data structure named signature tree
to store strings in the encoded classifier. Fig.2 shows a
signature tree corresponding to the encoded classifier in Table
II. Each edge of the tree represents a character, and each node
represents a prefix of strings in the encoded classifier. The ID
of each leaf node represents the ID of a rule in the encoded
classifier.

The concatenated multi-string matching can be performed
by traversing the signature tree according to the inputs of d
matching character sets. If any of the d matching character sets
is empty, the result will be NULL. Otherwise, the matching
is performed as follows. At the beginning, only the root node
is active. The outgoing edges of the root node are examined
against the characters in the first matching character set. Each
time when a match is found, the corresponding node (at level
one) pointed by the matched edge will be activated. After the
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Fig. 2. An example of signature tree.

examination, the root node is deactivated, and one or multiple
nodes (if at least one matching edge is found) at level one
become active. Then the active nodes at level one will be
examined one by one against the characters in the second
matching character set. A similar procedure will repeat to
examine characters in the remaining matching character sets.
In this procedure, active nodes move from low levels to high
levels of the signature tree, and eventually IDs of the active
leaf nodes represent the matched rules.

The traversal complexity of the signature tree depends on
many factors, including the size of each matching character
set, the number of active nodes at each level when the signature
tree is being traversed, as well as the implementation method
of the signature tree. One way of implementing the signature
tree is to store each node as a whole data structure, and
connect parent and child nodes together by points in the parent
nodes. However, our analysis on the real classifiers shows that
the numbers of outgoing edges of nodes have a very large
deviation (due to the inherent non-uniform distribution of field
values in classifiers), which makes the design of a compact
node structure a very challenging task. Even if we came up
with a compact node structure using the pointer compressing
scheme [28], incremental updates and query operations on the
signature tree would become extremely difficult. Therefore in
this paper, rather than storing each node as a whole structure,
we break up the node and store edges directly in a hash
table. More specifically, each edge on the signature tree takes
one entry of the hash table in the form of <source node
ID:character, destined node ID>. Here, “source node ID :
character” means the concatenation of “source node ID” and
“character” in binary mode, and works as the key of the hash
function, while “destined node ID” is the result we hope to
get from the hash table access.

Given the fact that the memory access speed is much
slower than logic, the processing speed of a networking
algorithm is usually determined by the number of memory
accesses (references) required for processing a packet [29].
The memory accesses that occur during the signature tree

Hash Table 1

SDSE 1 PM1
SDSE 2 SDSE 3 SDSE 4 SDSE 5

AFIFO 1
CFIFO 1 CFIFO 2 CFIFO 3 CFIFO 4

AFIFO 2 AFIFO 3 AFIFO 4 AFIFO 5PM2 PM3 PM4
• PM: Processing Module• SDSE: Single-Dimensional Search Engine

Hash Table 2 Hash Table 3 Hash Table 4N41:f51, 1N42:f52, 2N43:f51, 3N43:f53, 4N44:f51, 6N45:f51, 5N46:f51, 7
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Fig. 3. Pipelining architecture for packet classification.

traversal are caused by the hash table lookup. Therefore given
a certain hash table implementation, the number of times
that the hash table must be accessed to classify a packet is
a good indicator for the processing speed of the signature
tree based packet classification. In the following sections, we
divide the hash table into multiple partitions to exploit parallel
hash table access and thus improve the performance. Here, we
introduce two properties about the universal character set and
the signature tree, which will be used later.

Property 1. Characters in each universal character set can
be encoded as any bit strings as long as there are no two
characters with the same encoding.

Property 2. Nodes on the signature tree can be given any
IDs, as long as there are no two nodes with the same IDs at
the same level.

V. ASYNCHRONOUS PIPELINE ARCHITECTURE

To improve the traversal speed of the signature tree, we
separate the signature tree into d-1 partitions, and store edges
of each partition into an individual hash table. More specif-
ically, the outgoing edges of level-i nodes (i=1,. . . ,d-1) are
stored in hash table i. An example of the signature tree after
partition is shown in Fig.2, which has four partitions. The
corresponding hash tables of these four partitions are shown
in Fig.3. It’s worth noting that outgoing edges of the root node
are not stored. This is because the root node is the only node at
level 0, and each of its outgoing edges corresponds to exactly
one character in the first universal character set. According to
property 1, we can encode each character of the first universal
character set using the ID of the corresponding destined level-
1 node. For instance, in Fig.2 we can let f11=N11 and f12=N12.
So given the first matching character set, we can immediately
get the IDs of active nodes at level 1.

For a d-dimensional packet classification application, we
propose an asynchronous pipeline architecture with d-1 stages.
Fig.3 gives an example of the proposed pipeline architecture
with d=5. It includes d-1 processing modules (PM). Each PM
is attached with an input Character FIFO (CFIFO), an input
Active node FIFO (AFIFO), an output AFIFO, and a hash
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Fig. 4. The format of entries in CFIFO/AFIFO.

table. Each CFIFO supplies the connected PM with a set of
matching characters returned by the single-dimensional search
engine. Each AFIFO delivers active node IDs between adjacent
PMs. Each hash table stores edges in a certain partition of the
signature tree.

Since each packet may have multiple matching character-
s/active nodes at a stage of the pipeline, two bits in each
entry of CFIFO/AFIFO are used to indicate the ownership
of matching characters/active nodes, as shown in Fig.4. An
“S” bit set to 1 means that the entry is the first matching
character/active node of a packet, while an “E” bit set to 1
means that the entry is the last matching character/active node
of a packet. If both “S” and “E” bits are set to 1, it means
that the entry is the only matching character/active node of a
packet.

When a packet is going to be classified, the d relevant fields
of the packet header are first sent to d single-dimensional
search engines. Each search engine returns a set of matching
characters representing the matched ranges on the correspond-
ing dimension to the attached CFIFO (the first search engine
returns matching characters to the attached AFIFO 1). If no
matching character is found, a NULL character encoded as all
“0” is returned.

In the pipeline, all PMs work in exactly the same way,
therefore we focus on a certain PM i (i=1,. . . ,d-1) and consider
the procedure that a packet P is being processed at PM i.

Suppose that packet P has x active node IDs in AFIFO
i, which are denoted by n1, n2, . . . , nx, and y matching
characters in CFIFO i, which are denoted by c1, c2, . . . , cy .
The processing of packet P at PM i consists of the processing
of x active node IDs. In the processing of each active node
ID, say nj , PM i takes out the matching character c1, c2, . . . ,
cy from the attached CFIFO, and concatenates each of them
(if the character is not NULL) to nj to form y hash keys and
access the attached hash table for y times. Results from the
hash table indicate the IDs of nj’s child nodes, which will
be pushed into the output AFIFO when it is not full. If the
output AFIFO is currently full, the push-in operation along
with the operation of PM i will be suspended until one slot of
the output AFIFO becomes available.

During the processing of packet P, if PM i can not find any
match in the hash table, or if the matching character of the
packet is NULL, PM i will push a “NULL” node ID encoded
as all “0” into the output AFIFO to notify the downstream
PMs that the packet does not match any rule.

The number of hash table accesses required by PM i to
process packet P is equal to the product of the active node
number and the matching character number of packet P; i.e.,
x · y in this case, if we omit the overhead caused by the hash
collision.

VI. INTRA-STAGE PARALLEL QUERY

The asynchronous pipeline architecture introduced above
deploys one hash table at each stage. The processing of each
active node ID at each PM may involve multiple accessing of
the hash table. To accelerate the processing of each active node
ID, we plan to further partition the hash table at each stage to
exploit intra-stage parallelism. After the intra-stage partition,
each PM might be associated with multiple hash tables, which
can be accessed in parallel. For easy control and avoidance of
the packet out-of-sequence, each PM will process active node
IDs in the strict serial way. That is, if there is an active node
ID currently being processed (some hash tables are therefore
occupied), the processing of the next active node ID cannot
be started, even if there are hash tables available to use.

Before introducing schemes for the intra-stage hash table
partition, we present several concepts, among which the con-
cept of independent range set is similar to but not exactly the
same as the concept of independent rule set proposed by Sun
et al. in [30].

Definition 1. Independent ranges. Let f1and f2(f1 ̸= f2)be
two ranges on a dimension. f1is called independent of f2 if
f1

∩
f2 = ϕ.

Definition 2. Independent range set. Let T be a set of
ranges. T is called an independent range set if any two ranges
in T are independent.

Definition 3. Independent characters. Let c1 and c2 be two
characters associated with range f 1 and f 2, respectively. c1 is
called independent of c2 if f 1 is independent of f 2.

Definition 4. Independent character set. Let U be a set of
characters. U is called an independent character set if any two
characters in U are independent.

Definition 5. Independent edges. Suppose e1=<s1:c1, d1>
and e2=<s2:c2, d2> are two edges in a certain partition of the
signature tree. e1is called dependent on e2 if s1=s2 and c1 is
dependent on c2; otherwise, e1is called independent of e2.

Definition 6. Independent edge set. Let E be a set of
edges in a certain partition of the signature tree. Eis called an
independent edge set if any two edges in E are independent.

Definition 7. Work-conserving hash tables. Suppose we
have M hash tables associated with PM i of the pipeline,
where an active node ID, say nid1, is being processed. We
say these hash tables are work-conserving for processing nid1

if no hash table is left idle when there are matching characters
associated with nid1 waiting for query; in other words, we can
always find a free hash table in which an un-queried edge 1 of
nid1 is stored if not all hash tables are occupied. Hash tables
associated with PM i are called work-conserving hash tables if
they are work-conserving for processing any active node IDs.

A. Edge Grouping

The main objective of the intra-stage hash table partition is
to guarantee the work-conserving property of the partitioned
hash tables, so that the processing throughput of PM can

1An un-queried edge of an active node ID could be either a real edge or
an unreal edge on the signature tree. The query for an unreal edge will cause
a return of search failure.
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be maximized and made more predictable. Given M work-
conserving hash tables and y matching characters, the pro-
cessing of each active node ID can be finished within ⌈y/M⌉
parallel hash accesses.

Suppose we want to partition the original hash table associ-
ated with PM i into M work-conserving hash tables. The most
straightforward way is to divide edges of the original hash
table into M independent edge sets, and then store each of
them in an individual hash table. This way, we can guarantee
the work-conserving property of the partitioned hash tables,
because edges to be queried for an active node ID must be
dependent on each other, and stored in different hash tables.

However, since M is a user-specified parameter, M hash
tables may not be sufficient to avoid the dependency among
all edges. Therefore, instead of dividing edges of the original
hash table into M independent sets, we divide them into M+1
sets denoted by Gk(k = 1, ..,M+1), among which the first M
sets are all independent edge sets, and the last set is a residual
edge set, which stores edges that do not fit into the first M
sets. The above action is called edge-grouping. We call edges
in the independent edge sets regular edges, and edges in the
residual edge set residual edges.

Given the M+1 edge sets after the edge-grouping, we can
store edges of each independent edge set in an individual hash
table, while duplicate edges of the residual edge set into all
M hash tables. When an active node is being processed, we
first query its regular edges, and then its residual edges. It’s
easily seen that no hash table would be left idle if there were
an un-queried edge. Therefore, the work-conserving property
of the partitioned hash tables is guaranteed.

Actually, the problem of edge-grouping itself is not difficult.
The main challenge comes from the following three questions.

1) Given an edge (real or unreal), how can we locate the
partitioned hash table in which the edge is stored?

2) How can we minimize the overhead caused by the
redundancy of residual edges?

3) How can we balance the sizes of partitioned hash tables?
We name these three problems, respectively, as the location

problem, the overhead minimization problem, and the balance
problem, and present two edge-grouping schemes to deal with
them.

B. Character-Based Edge-Grouping
The first edge-grouping scheme is named character-based

edge-grouping (CB EG). Its basic idea is to divide edges
according to their associated characters, and then embed the
grouping information in the encodings of characters. More
specifically, we reserve the first ⌈log2(M + 1)⌉ bit of each
character for the locating prefix, whose value is between 0
and M. If the locating prefix of a character is 0, edges labeled
with the character are residual edges, and thus can be found
in any partitioned hash tables. Otherwise, edges labeled with
the character are regular edges and can only be found in
the partitioned hash table indexed by the locating prefix. The
location problem of edge-grouping is thereby solved.

To address the overhead minimization problem and the
balance problem, we model the CB EG scheme as a weighted
character grouping (WCG) problem.

TABLE V
THE WEIGHTED CHARACTER GROUPING PROBLEM

Subject to.
Uk ⊆ U (k = 1, ...,M + 1); (1)∪

k

Uk = U (2)

Uk1

∩
Uk2 = ϕ (k1, k2 = 1, ...,M + 1 & k1 ̸= k2) (3)

L(c1, c2) :=

{
1 c1 is dependent on c2 (c1, c2 ∈ U)
0 c1 is independent of c2 (c1, c2 ∈ U)

(4)

L(c1, c2) = 0 (∀c1, c2 ∈ Uk ; k = 1, ...,M) (5)

W (Uk) :=
∑
c∈Uk

W (c) (6)

Objective.

Minimize: Max
k=1,...,M

(W (Uk) +W (UM+1)) (7)

Let U be the universal character set associated with PM i.
Let Uk (k=1, . . . , M+1) be M+1 non-overlapping character
sets divided from U.

Let c be an arbitrary character in U, and W(c) be its weight
function, meaning the number of edges labeled with c in the
original hash table.

Let W(Uk) (k=1, . . . , M+1) be the weight of character set
Uk.

Let L() be the dependence indicator. ∀c1, c2∈U, if c1 is
dependent on c2, L(c1, c2):=1; otherwise, L(c1, c2):=0.

The WCG problem is formally described in Table V. The
WCG problem is to find a valid configuration of Uk (k=1, . . . ,
M+1) to achieve the given objective. We have proved that the
WCG problem is an NP-hard problem, the proof of which
is provided in the appendix. Thus, we propose the greedy
algorithm in Algorithm 1 to solve the WCG problem.

According to M+1 character sets returned by the greedy
WCG algorithm, we assign each character a locating prefix,
and divide edges of the original hash table into M+1 edge
sets. The principle is that for each character in Uk (k=1, . . . ,
M), we let k be its locating prefix and allocate its associated
edges to edge set Gk; for each character in UM+1, we let 0
be its locating prefix, and allocate its associated edges to edge
set GM+1. After that, we can get M partitioned hash tables
by allocating edges of Gk (k=1, . . . , M) to hash table k, and
duplicating edges of GM+1 in every hash table.

Let’s consider an example, which partitions the last hash
table of Fig.3 into two work-conserving hash tables with the
CB EG scheme. First of all, we get the universal character
set associated with PM 4. It has three characters: f51, f52,
and f53, whose weights are 5, 1, and 1, respectively. With
the greedy WCG algorithm, the three characters are divided
into two independent character sets (U1 and U2) and one
residual character set (U3), among which U1 contains f51, U2

contains f52, and U3 contains f53. Therefore, edges labeled
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Algorithm 1 Greedy algorithm for WCG problem
1: Input:
2: U : the universal character set;
3: M : the number of independent character sets;
4: W (c) : the weight of character c;
5: Output:
6: independent character sets U1, . . . , UM ;
7: residual character set UM+1;
8:
9: Uk := ϕ (k = 1, ...,M + 1);

10: W (Uk) := 0 (k = 1, ...,M); //initialize the weight of set
Uk

11: Sort U in decreasing order of the character weight.
12: If U is empty, return (Uk (k = 1, . . . ,M + 1) );
13: From U select the character c with the largest weight;
14: Select the set U

′
with the smallest weight among sets U1,

. . . , UM whose characters are all independent of c. If there
is more than one such set, select the first one. If no such
set is found, put c into set UM+1, remove c from set U ,
and go to step 12;

15: Put c into set U
′
; remove c from set U ; W (U

′
)+ = W (c);

Go to step 12.

with character f51 and f52 are allocated to the first partitioned
hash table and the second partitioned hash table respectively,
while edges labeled with character f53 are duplicated in both
partitioned hash tables. The final partition result is shown in
Fig.5(a).

We use PE to denote the partition efficiency of a hash table
partition and define it in (8).

PE =
# of edges in the original hash table

M ×# of edges in the largest partitioned hash table
(8)

In the example above, the partition efficiency is only 58.3%
for two reasons: first is the redundancy caused by the residual
edge <N43:f53, 4>; second reason is the extreme imbalance
between two partitioned hash tables. This imbalance is caused
by the inherent property of the CB EG scheme, which has to
allocate edges labeled with the same character into the same
hash table. In the last hash table of Fig.3, five out of seven
edges are labeled with the same character f51. According to
the CB EG scheme, these five edges have to be allocated to
the same hash table, which results in the imbalance between
partitioned hash tables.

As a matter of fact, in real classifiers, the second reason
degrades the partition efficiency more severely than the first.
This is because many fields of real classifiers have very
imbalanced distributions of field values. For instance, the
transport-layer protocol field of real classifiers is restricted to a
small set of field values, such as TCP, UDP, ICMP, etc. Most
entries, say 80%, of real classifiers, are associated with the
TCP protocol. With the CB EG scheme, edges labeled with
TCP have to be allocated to the same hash table, which may
cause an extreme imbalance of hash tables, and thus result in
low partition efficiency.

N41:f51, 1N43:f51, 3N44:f51, 6N45:f51, 5N46:f51, 7N43:f53, 4
Hash Table 4.1 N42:f52, 2N43:f53, 4Hash Table 4.2

(a) CB EG scheme

N43:f51, 3N42:f52, 2N45:f51, 5N43:f53, 4
Hash Table 4.1 N41:f51, 1N44:f51, 6N46:f51, 7N43:f53, 4

Hash Table 4.2
(b) NCB EG scheme

Fig. 5. Two partitioned hash tables from the last hash table in Fig.3.

C. Node-Character-Based Edge-Grouping

The second edge-grouping scheme is named Node-
Character-Based Edge-Grouping (NCB EG), which divides
edges not only based on their labeled characters, but also based
on the IDs of their source nodes.

According to property 2, the ID of each node on the
signature tree can be assigned to any values as long as there
are no two nodes at the same level assigned the same ID.
With this property, the NCB EG scheme stores the grouping
information of each edge in both the encoding of the edge’s
associated character and the ID of the edge’s source node.
More specifically, the NCB EG scheme reserves the first
⌈log2(M + 1)⌉ bits of each character for the locating prefix,
and the first ⌈log2 M⌉ bits of each node ID for the shifting
prefix. Given an arbitrary edge <s1:c1, d1>, suppose the
locating prefix of c1 is loc, and the shifting prefix of s1 is
sft. If loc equals 0, the edge is a residual edge, and can be
found in any partitioned hash tables. Otherwise, the edge is
a regular edge and can only be found in the partitioned hash
table indexed by (sft+loc-1) mod M+1.

In order to locate the partitioned hash table in which a
given edge is stored using the above principle, we have
to divide edges into different edge sets following the same
principle. In contrast to CB EG, the NCB EG scheme solves
the overhead minimization problem and the balance problem
in two different steps: the Locating Prefix Assignment (LPA)
and the Shift Prefix Assignment (SPA).

The overhead minimization problem is solved in the LPA
step, in which the universal character set associated with
PM i is divided into M independent character sets and one
residual character set. Each character is assigned a locating
prefix ranging from 0 to M according to the character set it is
allocated to. The LPA step can also be described by the WCG
problem given in Table V, with only the objective changed
from (7) to (9).

Minimize: W (UM+1) (9)

We can not find a polynomial time optimal algorithm to
solve the WCG problem with the objective in (9); therefore,
we use the greedy WCG algorithm given in Algorithm 1 to
solve it.

The purpose of the SPA step is to balance the sizes of
independent edge sets. This is achieved by assigning a shift
prefix to each node to adjust the edge sets to which the
outgoing edges of the node are allocated. A heuristic algorithm
for the shift prefix assignment is given in Algorithm 2.
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Algorithm 2 Shift Prefix Assignment Algorithm
1: Input:
2: M : the number of independent character sets;
3: independent character set U1, . . . , UM ;
4: residual character set UM+1;
5: S: the set of nodes at level i of the signature tree;
6: E: the set of outgoing edges of nodes in S;
7: Output:
8: shift prefixes of nodes in S;
9: independent edge sets G1, . . . , GM ;

10: residual edge set GM+1;
11:
12: Gk := ϕ (k = 1, ...,M + 1);
13: Sort nodes of S in decreasing order of the number of

outgoing edges;
14: for each node n in S do
15: Divide the outgoing edges of n into M + 1 sets. The

principle is that for characters in Uk (k = 1, . . . ,M +1),
put their associated outgoing edges to Zk;

16: Select the largest edge set Zt among Zk (k =
1, . . . ,M); if there are multiple largest edge sets, select
the first one;

17: Select the smallest edge set Gv among Gk (k =
1, . . . ,M); if there are multiple smallest edge sets, select
the first one;

18: Let p := (v − t) mod M , and set the shift prefix
of n as p; //align Zt to Gv to achieve balance among
Gk (k = 1, . . . ,M)

19: for each set Zk (k = 1, . . . ,M) do
20: Move edges from set Zk to set G(k+p−1) mod M+1;
21: end for
22: Move edges from set ZM+1 to set GM+1;
23: end for

Consider using the NCB EG scheme to partition the last
hash table of Fig.3 into two work-conserving hash tables. The
LPA step of NCB EG is same as that for CB EG. With the
greedy WCG algorithm, we can get two independent character
sets (U1 and U2) and one residual character set (U3); among
which U1 contains f51, U2 contains f52, and U3 contains f53.
Therefore the locating prefixes of f51, f52, and f53 are 1, 2, and
0, respectively. Then the SPA algorithm is used to assign each
level-4 node of the signature tree a shift prefix. Since Node N43

has two outgoing edges, while other nodes have only one, it
will first be assigned a shift prefix. Since all independent edge
sets (G1 and G2) are empty at the beginning, we assign a shift
prefix of 0 to N43. Based on the shift prefix on the N43, and
the locating prefix on characters, regular edge <N43:f51, 3> is
allocated to G1, and residual edge <N43:f53, 4> is allocated
to G3. N41 is the second node to be assigned a shift prefix.
In order to balance the sizes of G1 and G2, the shift prefix
of N41 is set to 1, so that the edge <N41:f51, 1> is allocated
to G2 according to the locating prefix of f51. Similarly, N42,
N44, N45, and N46 will be each assigned a shift prefix, and
their outgoing edges are allocated to the corresponding edge
sets. The final partitioned hash tables, after the edge-grouping,
are shown in Fig.5(b), where the residual edge <N43:f53, 4>

is duplicated in both hash tables.
In this example, the hash table partition efficiency is

7/8=87.5%, which is higher than that with the CB EG scheme.
The main reason for this improved partition efficiency is that
the NCB EG scheme is capable of spreading edges labeled
with character f51 into different hash tables, so that a better
balance among partitioned hash tables is achieved.

VII. PERFECT HASH TABLE CONSTRUCTION

One major problem involved in the hash table design is hash
collision, which may increase the number of memory accesses
involved in each hash table lookup and slow down the packet
classification speed. Therefore, a perfect hash table with the
guarantee of no hash collision is desirable to support high-
speed packet classification. Although there are many perfect
hashing and alternative algorithms available in literature, most
of them require a complicated procedure to generate the hash
index (e.g., traversing a tree-like structure) [31], or need
more than one memory access in the worst case to find the
correct location storing the hash key among multiple potential
locations [32], [33].

In this section, we present a hybrid perfect hash table
construction scheme, which uses an arbitrary uniform hash
function and guarantees that the searched hash key can be
located with one memory access. For a given level of the
signature tree, the proposed perfect hash table construction
scheme can be used to create a single hash table (as in Fig.3)
or multiple partitioned hash tables (as in Fig.5). For simplicity,
we consider the case that each level of the signature tree has
one single hash table. The main idea behind the scheme is that
if a hash collision occurs when placement of a new key into
the hash table is attempted, the collision might be avoided if
the value of the key can be changed.

The hash key in the hash tables in Fig.3 is the concatenation
of “source node ID” and “character”. According to properties
1 and 2 summarized in Section IV, we can rename either the
“source node” or the “character” to change the value of a hash
key and achieve a collision-free placement. When a source
node at a stage is renamed to avoid collision, we also need
to update the destination node ID of its pointing edge at the
previous stage. Since the change of destination node ID field
won’t affect the hash entry location, this process only requires
minor modification in the hash table at the previous stage.

The main challenge involved in this process is that when
a node or character is renamed, some existing hash keys
in the hash table might have to be re-placed if they are
associated with the renamed node or character. We should
avoid fluctuation of the hash table; i.e., hash keys constantly
being added/removed from the hash table.

The hybrid perfect hash table construction consists of three
steps: in the first step, we convert the edges in the partition
into an equivalent bipartite graph model; in the second step,
we decompose the bipartite graph into groups of edges, and
associate each group with either a node vertex or a character
vertex; in the third step, we place these edges into the perfect
hash table. Edges in the same group will be placed into the
hash table as a whole.
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N21
N22N23N24

f32f33f34

f31

(a) Bipartite graph model

N21
N22N23N24

f32f33f34

f31

13
4
2 56
7 8

(b) Decomposition of the
bipartite graph

Fig. 6. Bipartite graph model associated with partition 2 of Fig.2. In Fig(b),
the red-colored number close to each vertex indicates the sequence in which
the corresponding vertex is carved from the graph.

1) Bipartite Graph Decomposition
Given a certain partition of the signature tree (for example,

partition 2 in Fig.2), we build a bipartite graph (as shown in
Fig.6(a)), in which each vertex on the left side represents a
node in the partition (called node vertex), each vertex on the
right side represents a character (called character vertex) in the
partition, and each edge represents an edge in the partition.

2) Bipartite Graph Decomposition
On the bipartite graph, we do a least-connected-vertex-first

traversal. In each iteration, we select the least connected vertex
(randomly select one if there are many), and carve the vertex
as well as its connected edges out from the graph. The edges
that are carved together will be regarded as being in the same
group, and they will be associated with the vertex that is carved
together with them. This recursive process repeats itself until
the bipartite graph becomes empty.

Given the bipartite graph in Fig.6(a), the process of decom-
position is shown in Fig.6(b). The first vertex that is carved
from the bipartite graph is character vertex “f34”, since it is
one of the vertices with the least connected edges. The edge
connected to character vertex “f34” is also carved out from the
bipartite graph and associated with vertex “f34”. After the first
carving, node vertex “N22” becomes the vertex with the least
connected edges and will be carved from the bipartite graph.
The edge group associated with “N22” is empty since “N22”
has no edge connected at the moment when it is carved. The
above process continues, and after the entire decomposition,
each vertex will be associated with a group of edges (some
groups can be empty as those associated with “N22” and
“f31”).

3) Perfect Hash Table Construction
Then we start to add carved edges into the hash table in

reverse order of the decomposition. In other words, edges
removed from the bipartite graph first are the last placed
into the hash table. The edges that were carved out from the
bipartite graph together will be placed into the hash table as
a group. Any collision occurring during the placement of a
group will cause the renaming of the associated dimension
(either the source node ID or character) and the re-placement
of the entire group. The reason that we place the groups of
edges in reverse order of the decomposition is because the

edge groups removed early from the bipartite graph are all
very small (most of them have only one edge). So placing
them into the hash table at the end can increase the success
probability when the hash table becomes full.

During the placement of a group of edges, the name of
their associated vertex will also be decided. Once a group of
edges is successfully stored into the hash table, the name of
its associated vertex is settled and will not be changed again.

It should be noted that the first group placed into the hash
table is always empty. Consider the decomposition result of
Fig.6(b). The group associated with “f31” will be the first
placed into the hash table, which is empty. Therefore we can
label “f31” as any value. Then the second group is the one
associated with node “N21”, which has only one edge < N21 :
f31 >. Since the edge is the first edge placed into the hash
table, there is no collision and “N21” can be assigned any
value. The third group to be placed is the group associated
with “f32”, which has only one edge < N21 : f32 >. If there
is a collision when < N21 : f32 > is placed, we will rename
the vertex associated with it, which is “f32” in this case, to
resolve the collision. Note that the other dimension of the edge
(“N21”) has its name already settled prior to this placement
and will not be renamed to resolve the collision. The above
process repeats itself until all edge groups are placed into the
hash table without collision.

It is easy to see that with the hybrid perfect hash ta-
ble construction solution, all edges are broken into many
small independent groups. A collision occurring during the
placement of a group will not affect the groups that had
already been placed into the hash table, so the process will
converge, and a perfect hash table can be constructed. It is
worth mentioning that the hash function used in the hybrid
perfect hash table construction doesn’t have to be invertible.
An arbitrary universal hash function can be used here.

VIII. IMPLEMENTATION ISSUES AND PERFORMANCE
EVALUATION

A. Scalability and Incremental Update

The proposed pipeline architecture supports an arbitrary
number of dimensions. To add/delete a dimension, we only
need to add/remove a PM along with its associated single-
dimensional search engine, CFIFO, AFIFO, and hash tables.

The pipeline architecture also supports incremental updates
of rules. To add/remove a rule, we traverse the signature
tree along the path representing the rule, and add/remove
the corresponding edges in the hash tables. Considering the
overhead involved in perfect hash table update, we would
suggest to use conventional hashing schemes to build the
hash tables if the classifier is expected to be updated. Since
the complexity of insertion/removal operation in hash table is
O(1), the pipeline architecture has a very low complexity for
incremental update.

B. Storage Complexity

Suppose the maximum number of rules supported by the
proposed pipeline architecture is N , the maximum number of
hash tables used at each stage is M , and the number of total
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dimensions is d. The storage requirement of the pipeline archi-
tecture mainly comes from two parts: (1) d single-dimensional
search engines; (2) hash tables and AFIFOs/CFIFOs in the
pipeline.

The storage requirement of each single-dimensional search
engine depends greatly on the type of field associated with the
dimension. For instance, if the type of field is transport-layer
protocol, a 256-entry table could be used as the search engine,
which requires no more than 1 Kbytes of memory. If the type
of field is source/destination IP address, an IP lookup engine
must be the single-dimensional search engine, which might
require 70∼100 Kbytes of memory [27].

For hash tables in the pipeline, we use two different hash
schemes. The first is the conventional hashing scheme, which
uses a simple linear probing scheme to resolve the hash
collision [34]. In order to achieve a low hash collision rate,
the conventional hash scheme uses a relatively low load factor
LF = 0.5. The second is the hybrid perfect hashing scheme
presented in Section VII, which can easily build a perfect hash
table with a high load factor LF = 0.8.

The storage requirement for hash tables at each stage (H) is
determined by the number of edges associated with that stage
(T ), the number of bits used to represent each edge (B), the
load factor of hash tables, and the partition efficiency (PE)
when multiple hash tables are used. H can be represented by
(10):

H = T ×B × 1

PE
× 1

LF
(bits) (10)

Since each edge e1 is represented by < s1 : c1, d1 >; where
s1 is the ID of the source node of e1, c1 is the character labeled
on e1, and d1 is the ID of the destination node of e1; the
number of bits required to represent each edge is equal to the
sum of the numbers of bits used for representing s1, c1, and
d1. It is easily seen that the number of nodes at each level of
the signature tree is no more than N ; therefore s1 and d1 can
each be represented by ⌈log2 M⌉ + ⌈log2 N⌉ bits, where the
first ⌈log2 M⌉ bits are the shift prefix, and the last ⌈log2 N⌉
bits are used to uniquely identify the node at each level of
the signature tree. The number of characters in the universal
character set of each dimension is equal to the number of
unique ranges on that dimension. It is easy to see that the
unique range on each dimension is no more than N . Therefore,
c1 could be encoded as ⌈log2(M + 1)⌉+⌈log2 N⌉ bits, where
the first ⌈log2(M + 1)⌉ bits are the locating prefix, and the
last ⌈log2 N⌉ bits are used to uniquely identify the character
(range) on the dimension. To sum up, the number of bits used
for representing each edge could be obtained in (11):

B ≤ 3 ⌈log2 N⌉+ 2 ⌈log2 M⌉+ ⌈log2(M + 1)⌉ (11)

The number of edges to be stored at each stage of the
pipeline is bounded by N ; therefore T ≤ N . If we assume the
hash table partition efficiency is 1 (Shortly, we will show that
the partition efficiency of NCB EG scheme is close to 1), and
substitute it along with LF = 0.5, T ≤ N and (11) into (12),
we can get the total storage requirement of the hash tables at
each stage as in (12):

H ≤ 6N ⌈log2 N⌉+6N ⌈log2 M⌉ (bits) ≤ N log2 N (bytes)
(12)

Since there are d−1 stages in the pipeline, the total memory
requirement is bounded by N(d−1) log2 N bytes. The actual
memory requirement is much less that this number since the
number of edges in the first few stages is much less than N . In
addition, by using the perfect hash table with a high load factor
LF = 0.8, the memory requirement can be further reduced.

Regarding AFIFOs and CFIFOs, we will later show that
each AFIFO/CFIFO needs only a small piece of memory, say
8 entries, to achieve a good enough performance. If d = 5, the
total storage requirement for 5 AFIFOs and 4 CFIFOs is less
than 200 bytes, which is insignificant compared to the storage
requirement of hash tables.

As a whole, the total storage requirement of the pipeline
architecture, excluding the single dimensional search engines,
is bounded by N(d − 1) log2 N bytes. If we substitute N =
4K, d = 5 in it, the storage requirement is bounded by
192 Kbytes, which makes our pipeline architecture among
the most compact packet classification schemes proposed
in literature, even if we count in the memory required by
the single dimensional search engines. The actual memory
requirement of the proposed pipeline will be presented in the
next subsection using classifiers created by ClassBench [35].

C. Performance Evaluation

Three packet classification schemes are used in the eval-
uation: the proposed pipeline architecture, B2PC [26], and
HyperCuts [12]. We implemented the first two schemes in C++
and obtained the HyperCuts implementation from [36]. Since
the processing speed of a networking algorithm is usually
determined by the number of memory accesses required for
processing a packet, we count and compare the average
number of memory accesses required to process a packet in
different schemes. In the paper, we define one time slot as the
time required for one memory access.

To evaluate the performance of the proposed pipeline archi-
tecture, we use ClassBench tool suites developed by Taylor
to generate classifiers and traffic traces [35]. Three types of
classifiers are used in the evaluation: Access Control Lists
(ACL), Firewalls (FW), and IP Chains (IPC). We generate two
classifiers for each type using the provided filter seed files, and
name them ACL1, ACL2, FW1, FW2, IPC1, and IPC2, each
of which has five dimensions and about 4K rules 2.

We first evaluate the partition efficiency. Table VI shows the
partition efficiencies of CB EG and NCB EG under classifiers
ACL1, FW1, and IPC1 with a different number of partitioned
hash tables (M ) at each stage. Apparently, NCB EG always
outperforms CB EG, and can achieve a partition efficiency
higher than 90% in most situations. The only exception is the
Destination IP field, where the partition efficiency achieved
by NCB EG ranges from 67% to 96%. The reason for this
relatively low percentage is that level 1 of the signature tree,

2The generated rules are slightly less than 4K because of the existence of
redundant rules. [35]
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TABLE VI
THE PARTITION EFFICIENCY OF CB EG AND NCB EG AT DIFFERENT STAGES OF THE PIPELINE WITH DIFFERENT CLASSIFIERS

M Dest IP Src Port Dest Port Protocol
# edges CB EG NCB EG # edges CB EG NCB EG # edges CB EG NCB EG # edges CN EG NCB EG

ACL1 2 1568 93.44% 96.43% 1568 50.00% 100.00% 3273 65.83% 95.65% 3429 54.26% 99.97%
3 1568 88.59% 93.84% 1568 33.33% 99.94% 3273 78.66% 95.03% 3429 37.41% 100.00%
4 1568 86.92% 93.11% 1568 25.00% 100.00% 3273 80.38% 94.05% 3429 28.37% 99.91%

FW1 2 2400 74.77% 90.50% 2625 68.65% 97.87% 3509 73.13% 93.42% 3601 76.58% 98.87%
3 2400 93.24% 94.90% 2625 47.14% 99.89% 3509 91.45% 99.80% 3601 52.21% 97.75%
4 2400 73.89% 85.47% 2625 35.36% 99.89% 3509 79.03% 99.80% 3601 41.51% 96.59%

IPC1 2 2691 52.17% 67.61% 2889 62.40% 98.07% 3488 77.79% 90.04% 3588 73.16% 100.00%
3 2691 56.27% 69.27% 2889 42.50% 99.59% 3488 61.32% 97.70% 3588 83.06% 99.92%
4 2691 65.32% 77.24% 2889 31.87% 99.21% 3488 46.81% 99.32% 3588 64.12% 99.89%
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Fig. 7. Time slots for generating one result vs. AFIFO Size, when
conventional hash scheme is used.

which is associated with the Destination IP field, has fewer
nodes than the other levels. This small number of nodes at
level 1 however each has a relatively large fan-out, which
lowers the efficiency of the SPA algorithm and increases the
imbalance between partitioned hash tables. Fortunately, the
number of edges associated with the first stage of the pipeline
is far less than that associated with other stages. Therefore, the
relatively low partition efficiency would not increase too much
of the storage requirement. In the remainder of this section,
all simulations are conducted with the NCB EG scheme.

In the proposed pipeline, when an AFIFO becomes full, the
backpressure would prevent the upstream PM from processing
new active node IDs; therefore the size of an AFIFO might
affect the throughput of the pipeline to a certain extent. Fig.7
shows the relationship between AFIFO size and the average
number of time slots needed for exporting one classification
result when a conventional hash scheme is used. Curves in the
figure show that the throughput of the pipeline is not sensitive
to AFIFO size. When AFIFO size is larger than 8, the pipeline
can achieve stable throughputs regardless of the classifier types
or the value of M . Further increasing AFIFO size can not
lead to significant throughput improvement. Therefore, in the
remainder of our simulations, the sizes of AFIFOs are all set
to 8 entries.

In Fig.8, we compare the proposed pipeline architecture
with HyperCuts and the B2PC scheme in terms of the average

time slots required for each classification operation. In the
comparison, we use two different hash schemes to implement
the distributed hash tables: the conventional hash scheme with
LF = 0.5, and the proposed hybrid perfect hash scheme with
LF = 0.8. Since the original B2PC scheme was designed to
return only the most specific rule, we changed it to return all
matched rules. The bucket size of HyperCuts is set to 16, and
its space factor is set to 4 (optimized for speed). We suppose
that each memory access of HyperCuts could read 64 bits.
Based on the results in [27], we assume the single-dimensional
search engines are able to return a search result in every 2.2
memory accesses (time slots).

Fig.8 shows that for IPC2 the proposed pipeline can com-
plete one classification operation in every 3.79 time slots even
when there is only one (conventional) hash table at each stage.
If we use perfect hash tables to replace the conventional hash
tables, the performance can be improved to 2.87 time slots
for each classification operation. The reason that the pipeline
with perfect hash tables performs better is that the conventional
hash tables may introduce hash collisions during the lookup
operations, thereby increasing the number of memory accesses
for each operation. For IPC2, there is just a slight performance
improvement (from 3.79 time slots/operation to 2.22 time
slots/operation) when M increases from 2 to 4. This is because
the packet classification speed has already reached the speed
limitation of single-dimensional search engines. In contrast,
for ACL1 the proposed pipeline architecture needs about 20
time slots to finish a packet classification when M = 1. The
performance gets significantly better when M increases to
4, where the proposed pipeline can export one classification
result in every 10.52 time slots with conventional hash tables
and 6.27 time slots with perfect hash tables.

The proposed pipeline architecture has very strong ro-
bustness. It significantly outperforms HyperCuts and B2PC
schemes for all tested classifiers. Although part of the per-
formance improvement is gained from the parallelism of the
pipeline (in fact, the B2PC scheme also employs many parallel
bloom filters to accelerate its classification speed), the use of
parallelism doesn’t increase the overall storage cost thanks to
the high partition efficiency provided by the NCB EG scheme.
For ACL2, FW1, and IPC1, the HyperCuts scheme requires
more than 200 time slots on average to perform each packet
classification. The reason for this slow processing speed is
that these classifiers have lots of overlapping ranges/fields
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Fig. 8. Average time slots required for each classification operation under different schemes.

at source/destination IP address fields and source/destination
port fields. The large number of overlapping ranges can cause
a large number of rules replicated in leaves [12], which
leads to a steep increase in the number of memory accesses.
Although authors in [12] claimed that the performance of
HyperCuts could be improved by using a pipeline, it is unclear
yet what performance the pipelined-version of HyperCuts
would achieve, since the last stage of the pipelined-version of
HyperCuts still needs to search for a large number of replicated
rules in leaf nodes.

From Fig.8, it is easy to see that using the perfect hash table
can significantly improve the classification speed (by 30% ∼
50% under most classifiers and settings). Table VII shows the
hash table collision rate under different classifiers and settings
of M when the conventional hash scheme is used to build
hash tables with LF = 0.5.

TABLE VII
HASH TABLE COLLISION RATE WHEN CONVENTIONAL HASH SCHEME IS

USED

Classifier M=1 M=2 M=3 M=4

ACL1 0.31 0.20 0.12 0.12
ACL2 0.27 0.33 0.10 0.12
FW1 0.28 0.24 0.39 0.17
FW2 0.46 0.22 0.16 0.30
IPC1 0.31 0.22 0.18 0.20
IPC2 0.28 0.18 0.13 0.13

In Table VIII, we compare the storage cost of the proposed
pipeline with those of HyperCuts and B2PC. The storage
cost of the proposed pipeline consists of two major parts:
(1) single dimensional search engines and (2) hash tables.
According to the single-dimensional search proposed in [27],
the storage requirement for a single-dimensional search engine
is 78 KB, or 312 KB for four engines (the storage requirement
of the single-dimensional search engine for the transport-layer
protocol field is omitted here). The calculation of the storage
cost of hash tables is based on formulas (10) and (11), where
the load factors LF of conventional hash tables and perfect
hash tables are configured as 0.5 and 0.8, respectively.

The small storage requirement allows the proposed pipeline

to fit into a commodity FPGA, in which the hash tables
could be implemented by on-chip SRAM. Suppose the on-chip
SRAM access frequency is 400 MHz, and the smallest size of
an IP packet is 64 bytes. From Fig.8, the proposed pipeline
without perfect hash tables achieves the best performance
under IPC2 (with 2.25 time slots/operation) and the worst
performance under ACL1 (with 10.52 time slots/operation),
which leads to a throughput between 19.5Gbps and 91Gbps.
With the perfect hash tables, the proposed pipeline achieves
the best performance under IPC2 and FW2 (with 2.2 time
slots/operation) and the worst performance under ACL2 (with
7.65 time slots/operation), leading to an improved throughput
of between 26.8Gbps and 93.1Gbps.

TABLE VIII
STORAGE REQUIREMENT REQUIRED BY DIFFERENT SCHEMES

Classifier
Proposed Pipeline (M=4)

HyperCuts B2PCConvl Hash Perfect Hash

ACL1 436K 390K 611K 540K
ACL2 470K 410K 214K 540K
FW1 464K 407K 3536K 540K
FW2 502K 431K 2766K 540K
IPC1 477K 415K 445K 540K
IPC2 516K 440K 1482K 540K

IX. CONCLUSION

In this paper, we model the multi-match packet classification
as a concatenated multi-string matching problem, which can
be solved by traversing a flat signature tree. To speed up
the traversal of the signature tree, the edges of the signature
tree are divided into different hash tables in both vertical and
horizontal directions. These hash tables are then connected
together by a pipeline architecture, and they work in parallel
when packet classification operations are performed. A perfect
hash table construction is also presented, which guarantees
that each hash table lookup can be finished in exactly one
memory access. Because of the large degree of parallelism
and elaborately designed edge partition scheme, the proposed
pipeline architecture is able to achieve an ultra-high packet
classification speed with a very low storage requirement.
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Simulation results show that the proposed pipeline architecture
outperforms HyperCuts and B2PC schemes in classification
speed by at least one order of magnitude with a storage re-
quirement similar to that of the HyperCuts and B2PC schemes.

APPENDIX
PROOF: THE WEIGHTED CHARACTER GROUPING (WCG)

PROBLEM IS AN NP-HARD PROBLEM

We first introduce an Average-Division Problem, which has
been proved in [37] to be an NP-Complete problem.

Given a finite set S = {1, 2, . . . , N}, and a weight function
w : S → Z, we ask whether there is a subset S

′ ⊆ S satisfying∑
i∈S′

w(i) =
1

2

∑
i∈S

w(i) (13)

The Average-Division problem can be defined in a language:
AVG DIV:=
{< S,w >:

S ⊂ N,
w is a function from N → Z,
there exists a subset S

′ ⊆ S such that
∑

i∈S′ w(i) =
1
2

∑
i∈S w(i)}

To prove that the WCG problem is NP-hard, we first
introduce the decision problem of WCG and then define it
as a language. We will show that the language of AVG DIV
is reducible to the language of WCG in polynomial time.

The decision problem of the WCG problem is formally
defined as follows:

Given a field set F , a set number M , a dependence indicator
L, a weight function W , and a real number V , we ask whether
there exists a character grouping scheme {G1, ..., GM+1} that
satisfies the constraints (1) ∼ (6) defined in the WCG problem,
as well as the new constraint:

Max
k=1,...,M

(W (Gk) +W (GM+1)) ≤ V (14)

We define the WCG problem as a language:
{< F,M,W, V >:

F : a set of fields; each field is defined in the form
of < a, b >, where a and b are two real numbers satisfying
a ≤ b;

M : the number of sets;
W : a weight function from F → Z;
V : a real number,
there exists a character grouping scheme

{G1, ..., GM+1} satisfying the constraints above. }
Now we will show that the AVG DIV language can be

reduced to WCG language in polynomial time.
Let < S1, w > be an instance of AVG DIV. We construct

an instance < F,M,W, V > of WCG as follows:
Let F be the set of N independent fields; thus constraint

(4) and (5) in Table V can be eliminated. For each fi ∈
F (i = 1, ..., N), let W (fi) = w(i). Let M be 2, and V be∑

i∈S1
w(i)/2. Now the constraints can be re-constructed as

follows:

G1, G2, G3 ⊆ F ; (15)

∪
Gk = F ; (16)

G1

∩
G2 = ϕ, G1

∩
G3 = ϕ, G2

∩
G3 = ϕ; (17)

W (Gk) :=
∑

fi∈Gk

w(i) (k = 1, 2, 3); (18)

Max
k=1,2

(W (Gk) +W (G3)) ≤
1

2

∑
i∈S1

w(i). (19)

It is easy to know that (19) is equivalent to

W (G3) = 0 and W (G1) = W (G2) =
1

2

∑
i∈S1

w(i) (20)

Next we will show that < S1, w >∈ AVG DIV if and only
if < F, 2,W,

∑
i∈S1

w(i)/2 >∈ WCG when W (fi) = w(i):
Suppose there exists an allocation scheme {G1, G2, G3}

satisfying (15)-(20). Let S
′

1 = {i|fi ∈ G1}. According
to (18) and (20),

∑
i∈S

′
1
w(i) = 1

2

∑
i∈S1

w(i). Conversely,
suppose there exists a set S

′

1 ⊆ S1 satisfying
∑

i∈S
′
1
w(i) =

1
2

∑
i∈S1

w(i). Let G1 = {fi|i ∈ S
′

1}, G2 = F − G1, and
G3 = ϕ. Apparently (15)-(20) are satisfied.

As we’ve seen, AVG DIV can be reduced to WCG
in polynomial time; thus WCG is an NP-hard problem.
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