
TCP PLATO: Packet Labelling to Alleviate
Time-Out

Shikhar Shukla, Shingau Chan, Adrian S.-W. Tam, Abhishek Gupta, Yang Xu, H. Jonathan Chao
Department of Electrical and Computer Engineering

Polytechnic Institute of New York University
Brooklyn, New York

Email: {sshukl01, schan02}@students.poly.edu, adriantam@nyu.edu, ag3987@students.poly.edu, {yangxu, chao}@poly.edu

Abstract—Many applications (e.g., cluster based storage and
MapReduce) in modern data centers require a high fan-in, many-
to-one type of data communication (known as TCP incast), which
could cause severe incast congestion in switches and result in
TCP goodput collapse, substantially degrading the application
performance. The root cause of such a collapse is the long idle
period of the Retransmission Timeout (RTO) that is triggered at
one or more senders by packet losses in congested switches. In
this paper we develop a packet labelling scheme PLATO, which
improves the loss detection capabilities of NewReno using an
innovative packet labelling system. Packets carrying this special
label are preferentially enqueued, at the switch. This allows TCP
to detect packet loss using three duplicate acknowledgements,
instead of the time expensive RTO; thus avoiding the goodput
collapse. PLATO makes minor modifications to NewReno and
does not alter its congestion control mechanism. The implemen-
tation and simulations have been done in Network Simulator
3 (NS3). PLATO is found to perform orders of magnitude
better than NewReno as well as state-of-art incast solution Incast
Control TCP (ICTCP). We also show that TCP PLATO can be
implemented using commodity switches with Weighted Random
Early Detection (WRED) function.

Keywords: TCP Incast, Data Center Networks

I. INTRODUCTION

Today’s data center networks (DCNs) have become an im-
portant area of research and innovation due to the services that
they provide. TCP incast goodput collapse is a critical problem
that afflicts applications with high fan-in, many-to-one data
transfer patterns [1]–[4], such as cluster based storage systems
[5]–[7] and MapReduce [8]. The incast communication pattern
was first termed by Nagle et al in [5]. In the incast scenario,
a client requests a chunk of data called Server Request Unit
(SRU) from several servers. These servers then send the data to
the client in parallel, as shown in Fig. 1. Upon the successful
receipt of all the SRUs, the transfer is completed and the client
can send out new requests for another round of SRUs. Thus,
the finish time of a round of transfers depends on the slowest
server. For such a many-to-one data exchange in the high band-
width, low latency DCN environment, the limited buffer space
on the commodity switches becomes the critical resources
[3]. Traditionally, the aforementioned applications use TCP
as the transport layer protocol [2], [3]. The synchronization
of various TCP flows, coupled with the bursty nature of TCP
traffic and the small buffer capacity of the switches, can lead to
severe packet losses, and consequently retransmission timeout

Fig. 1. Incast traffic is a high fan-in, many to one data transfer.

(RTO), at one or more TCP senders. The timeout is usually
a minimum of 200 ms [9], as determined by RTOmin. In the
DCN environment the typical Round Trip Time (RTT) is in the
order of 100 µs, therefore the RTO can result in TCP incast
goodput collapse [2].

Fig. 2 shows the link utilization characteristics for the
bottleneck link. In this simulation, each of the 45 servers
sends a SRU of size 100 KB each, to the client. The client
and servers are using the NewReno variant of TCP [10],
[11]. The switch buffer size is 256 KB and the base RTT
is 100 µs. We find that initially, the link utilization is very
high, with a median value of 90% of the link bandwidth.
But it quickly falls to almost 0% and stays close to this
value for approximately 200 ms. This corresponds to several
servers experiencing a RTO in response to packet loss. After
the timeout, the utilization quickly reaches the median value
of 90% but falls again to almost 0%. This cycle continues
throughout the life of the data transfer. Thus the RTO resulting
from packet loss, leads to severe link under utilization, and
consequently the goodput collapse.

Several solutions have been proposed to solve TCP incast
goodput collapse problem [1], [3], [9], [12]–[14]. The solu-
tions that have been proposed thus far, have been based on
either of the two key ideologies. The first is to mitigate the
adverse impact of the RTO, by reducing the default RTOminto
the 100 µs range [3]. Since RTOminis reduced to the order of
RTT, occurrence of a RTO does not cause an overall goodput
collapse. The main problem with this approach is that most
operating systems lack the fine grained timers required to
implement the microsecond level timers. Also, every time the

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600

In
st

an
ta

ne
ou

s
Li

nk
 U

til
iz

at
io

n
(M

bp
s)

Time (ms)

Link Utilzation of Bottleneck Link

Fig. 2. Link utilization for the bottleneck link for 45 servers sending 100
KB SRU to 1 client over a 256 KB bottleneck switch buffer. All servers and
client use TCP NewReno.

TCP sender experiences a RTO, it enters slow start, and its
congestion window (cwnd) is reset to one full sized segment,
called sender maximum segment size (SMSS). Then it takes
several RTTs for the cwnd to become comparable to available
bandwidth. The second ideology is to delay the build up of
congestion at the switch. Approaches based on this idealogy
include using ECN marks to limit sending rate of servers,
receiver window based flow control and global scheduling of
traffic.

In this paper, we develop a packet labelling scheme, PLA-
TO, as a solution to TCP incast goodput collapse. We observe
packet loss is not an unfavorable event for TCP1. It informs
TCP of network congestion and allows it to regulate its data
rate, as a part of the Additive Increase Multiplicative Decrease
(AIMD) [15] congestion avoidance mechanism in TCP. The
root cause of the incast problem lies in the inefficiency
of the existing loss detection mechanisms of standard TCP
NewReno, in the DCN paradigm. If TCP is able to detect loss
sooner, rather than after a 200 ms timeout, the link under
utilization, and thus the goodput collapse can be avoided.
There exists an alternative mechanism of three duplicate acks,
which allows TCP to detect loss without the 200 ms delay. But,
as we show later, this method of loss detection fails under
certain packet loss conditions. PLATO attempts to improve
TCP’s loss detection capabilities by leveraging the existing
three duplicate ack mechanism in conjunction with a packet
labelling system. PLATO places a special label on certain
TCP segments2. The switch, in turn, gives a higher enqueue
preference to the packets carrying these labelled segments.
The TCP receiver responds to such a labelled segment with a
corresponding labelled ack. The sender again sends a labelled

1For the remainder of the paper, any reference to TCP should be assumed
to be the NewReno variant.

2The unit of information sent by TCP layer to IP layer is called a segment.
This segment, encapsulated in the IP header and Ethernet header and Ethernet
trailer, as seen by the switch, is called a packet. For the scope of this paper,
the terms segment and packet, can be used interchangeably, without loss of
generality.

segment on receiving a labelled ack. Even if all the unlabelled
packets are dropped by the switch, the labelled segments and
acks continue. This is by virtue of the preferential treatment
given to these special packets, by the switch. Thus, any packet
loss can be detected by means of the three duplicate acks, and
the long idle period of the RTO is avoided.

PLATO makes decisions for labelling segments that will be
sent in the future and relies on the continuation of the segment-
ack exchange. As we show later, this depends on the cwnd,
the amount of data unacknowledged in the network and the
availability of data from the application layer. Owing to the dy-
namic network conditions, it is challenging to identify whether
the segment-ack exchange can continue or not. The technical
contributions of this paper are (1) Using a simple packet
labelling scheme, PLATO, we are able to augment the loss
detection capabilities of TCP NewReno. This allows to avoid
the long idle period of RTO, and thus, the goodput collapse
in incast communication is averted. (2) Without significantly
modifying the behavior of TCP, PLATO is able to identify
whether the segment-ack exchange can continue. (3) The
simulations show that PLATO performs orders of magnitude
better than NewReno and incast-specific TCP variant ICTCP.
(4) We show that PLATO can be easliy implemented with
commodity switches with Weighted Random Early Detection
(WRED).

Section II presents the motivation for PLATO, where the
relationship between acks and RTO is explained. We also enu-
merate the packet loss patterns that result into RTO. Section III
describes PLATO in detail with the implementation described
by section IV, which shows that only minor modification to
the TCP stack on the end hosts is required. We also show that
commodity switches with WRED functionality can be used to
implement the switch functionality. Section V discusses the
performance evaluation before the conclusion in section VII.

II. MOTIVATION

TCP is a widely used transport layer protocol which pro-
vides reliable data transfer services. Although TCP has proven
to be very successful in Wide Area Networks (WAN), it is
unsuitable for the DCN. This is because, contrary to WAN,
DCNs have a high speed, low latency network, with small
buffers on switches. The small buffers facilitate the low latency
as well as reduced cost. Under these network conditions,
TCP’s loss detection mechanism is proven inefficient and leads
to severe link under-utilization, as shown in Fig. 2, and thus
the goodput collapse in incast applications. PLATO attempts
to improve the loss detection capabilities of TCP and make it
more suitable for the DCN paradigm. Since PLATO leverages
the existing mechanisms of TCP, it is prudent to analyse these
in detail.

A. TCP ACK Clock

TCP uses cumulative positive acks to indicate successful
receipt of segments. Acks are also used to regulate the
cwnd and thus the data rate of the sender. When an ack
acknowledges previously unacknowledged data, the cwnd is

incremented. On the contrary, cwnd is reduced if segment
loss is detected. This in accordance with the AIMD congestion
avoidance mechanism. The mechanism of sending segments in
response to acks is known as the TCP ack clocking. As long as
there is at least one segment and/or ack in-flight (alive) in the
network, the ack clock is said to be alive. If the cwnd can send
out new data, and there are no segment or ack in the network,
the ack clock is still said to be alive. Roughly speaking, if
the ack clock is alive, the sender can send segments. This is
discussed in detail in a later section.

We shall now discuss the methods used by TCP to detect
loss.

B. TCP Loss Detection Mechanisms

These are heuristics adopted by TCP to recognise that a
segment has been dropped by the network due to congestion.
Following are the loss detection mechanisms and TCP’s in-
terpretation of the information that they provide. Note that
in absence of Explicit Congestion Notification (ECN) [16]
and Selective Acknowledgements (SACK) [17], it cannot be
known with certainty if a particular segment was dropped due
to congestion. Similarly, the level of congestion in the network
cannot be accurately determined.

1) Retransmission Timeout (RTO): For every segment that
is sent over a TCP connection, a countdown timer, called
retransmission timer, is started. This timer is normally
configured to 200ms in most Operating System (OS)
implementations [9]. If an ack for the segment is not
received before the corresponding timer expires, it is
assumed that (i) the segment was dropped and needs
to be retransmitted, and (ii) there is a severe network
congestion. Consequently, the TCP sender drastically
reduces its sending rate to one SMSS to adjust to the
presumably severe congestion. The dropped segment is
then immediately retransmitted.

2) Fast Retransmit (FRtx): When three duplicate acks for
a segment are received before the retransmission timer
expires, it is assumed that (i) the segment was dropped,
and (ii) the congestion was transient, since at least three
segments following the presumably dropped segment
made it to the receiver. Consequently, the TCP sender
halves its data rate to adjust to the presumably non-
severe congestion. Also, the dropped segment is imme-
diately retransmitted, without waiting for the 200 ms
RTO.
An important conclusion from the above discussion is
that, usually, the loss of a segment will be detected by a
RTO if the ack clock is dead. Otherwise, if the ack clock
was alive, most likely, it would have resulted into the
three duplicate acks required for invoking FRtx, before
the expiration of the retransmission timer.
Of the two, RTO has a much higher penalty in terms
of the wasted network bandwidth owing to the 200 ms
idle waiting period where the sender is unable to send
any segments. This, as stated earlier, is the primary
reason for the TCP incast goodput collapse. It is also

Fig. 3. Block Loss: All the segments from a window are lost.

Fig. 4. Tail Loss: One of the last three segments are lost.

noteworthy that after an RTO, the cwnd is reset to one
SMSS, whereas after FRtx, the cwnd is only halved. This
leads to bandwidth under-utilization, since the sender
has to wait for several RTTs before the cwnd equals the
available network bandwidth. Thus, three duplicate acks
is the preferable loss detection mechanism, and serves
as an alternative to experiencing the adverse affects of
RTO. Unfortunately, the requirement of three duplicate
acks for invoking FRtx cannot always be met. This is
discussed in more detail in the Section II-C.
Here, we digress briefly to discuss a very important loss
recovery mechanism, which is intertwined with FRtx.

3) Fast Recovery (FRec): TCP enters the FRec state im-
mediately after FRtx. FRec is an extremely robust loss
recovery mechanism, whose in-built loss detection using
partial acks [11], provides a very efficient way for TCP
to recover from multiple segment losses in the same
window.

C. Reasons for RTO

Certain segment (and/or ack) loss patterns, may lead to the
scenario, where the sender is unable to detect loss by means
of three duplicate acks and suffers a RTO. These have been
studied by [4] and in our previous research [18]

1) Block Loss: As shown in Fig.3 if all the segments of a
window are dropped, there will be no in-flight segments
or acks left in the network. This will lead to the loss of
the ack clock and the cwnd will be stalled. Since there
are not enough acks to invoke FRtx, the TCP sender can
infer a segment loss only after the long idle period of
a RTO. Note, if limited transmit [19] is not in effect;
assuming that cwnd can hold at most n packets, loss of
n − 2 among any n consecutive segments can lead to
such a timeout [18].

Fig. 5. Double Loss: Loss of retransmitted packet.

2) Tail Loss: As shown in Fig.4, if one (or more) of the last
three segments towards the end of the life of the TCP
flow are lost; the TCP receiver cannot generate enough
duplicate acks to inform the sender about the loss. The
ack clock eventually dies, because there are no more
segments to send in response to incoming acks. Thus
the TCP sender resorts to RTO to infer segment loss.

3) Double Loss: As shown in Fig.5, when the TCP sender
detects a loss, the corresponding segment is retransmit-
ted. If this retransmitted segment is dropped again, the
sender will be able to detect this loss only after a RTO
[10].

From the discussion above, it can be concluded that the
occurrence of RTO can be attributed to two factors (i) the
loss of the ack clock which renders the invocation of FRtx
impossible, and (ii) the loss of retransmitted segments.

The packet labelling system adopted by PLATO, is designed
to tackle both factors. As described earlier, certain packets
carry the labelled segment/ack. Since the switch does not drop
these special packets, the ack clock is kept alive. Thus the
loss of any other packets is detected by the triple duplicate
acks. A similar label allows the switch to identify the packets
carrying the retransmitted packets, and preferentially enqueue
them. Thus, the sender does not have to resort to the alternate,
inefficient loss detection mechanism of RTO, and thus the
catastrophic drop in goodput is averted. The challenge here is
to identify which packet should be assigned the higher enqueue
priority so that the ack-clock may stay alive. It is important to
label as few packets as possible, so that the switch will have to
give preference to only a small number of packets. Note that
the labelling is done on the sender so the labelled packets are
not an additional burden on the switch. As stated earlier, the
ability to send new data depends on the cwnd, which is directly
affected by the network congestion. The labelling decision is
done for packets that will be sent in the future. Thus, the most
challenging part of PLATO is to identify whether the sender
will be able to send the packet carrying the labelled segment.

III. TCP PLATO

The primary objective of PLATO is to prevent the loss of
the ack clock, so that the loss of unlabelled packets may be
detected using three duplicate acks, rather than RTO. Also, to

Fig. 6. A simplified implementation of PLATO. Limited Transmit [19] when
enabled, allows TCP to send a segment each for the 1st and 2nd duplicate
acks.

avoid RTO resulting from double loss, the packet carrying
retransmitted segments must not be dropped. This goal is
achieved by influencing the switch to preferentially enqueue
packets carrying the labelled segment, labelled ack and re-
transmitted segment, while sacrificing unlabelled packets. We
now present a simplistic version of the labelling scheme.

A. Foundation for PLATO

The ack clock is alive as long as there is at least one segment
or ack in-flight in the network, or if the cwnd can send new
data. Consider Fig. 6, the initial cwnd (IW) allows sending
upto 3 segments. The TCP sender labels the first segment.
Upon receiving this labelled segment, the receiver replies with
a corresponding labelled ack. The switch, again, preferen-
tially enqueues this packet. When the sender receives this
ack, it sends another labelled segment. This process repeats,
approximately once every RTT. If some (or all) unlabelled
segments/acks are dropped at the switch, the labelled segment
and labelled ack keep the ack clock alive. This allows the
TCP sender to detect loss of the unlabelled segments using
the three duplicate acks and avoid RTO. Since the packets
carrying the labelled segment and labelled ack help to keep
the ack clock alive, they will henceforth be referred to as the
Heartbeat Packet(s).

Even if it is assumed that the switch never drops heartbeat
packets, the scheme described above is still based on an

implicit assumption, which is essentially flawed: Whenever
the TCP sender receives a labelled ack, it can always send a
labelled segment. It stems from the naive generalization made
in Section II. This is true only if the updated cwnd allows
and there is data to send. In the next subsection we describe
the impact of receipt of acks, on the TCP NewReno cwnd,
depending on the state TCP is in.

Also, consider the tail loss patterns described in Section
II-C. One of the reasons a tail loss results into a RTO, is
because the sender does not have data to send in response to
incoming acks. Thus, even though the cwnd allows, the non
availability of data becomes the limitation.

B. Response of Cwnd to Received Acks

Various acks received during Slow Start and Congestion
Avoidance

1) New ack: A new ack acknowledges previously unac-
knowledged data. When such an ack is received during
slow start or congestion avoidance, it results into an
increase in the cwnd. Thus the sender is able to send
previously unsent data no more than the summation of
the data acknowledged by the ack and the increase in
cwnd.

2) First and second duplicate acks: If limited transmit [19]
is in effect, the sender is able to send one full sized
segment for each of the two duplicate acks. If limited
transmit is not used, the sender does not send out new
data. It waits for either the third duplicate ack, a new
ack or a Retransmission Timeout (RTO). For the scope
of this paper, we assume that limited transmit is in effect.

3) Third duplicate ack: After the third duplicate ack is re-
ceived, TCP Fast Retransmits (FRtx) the corresponding
segment and enters Fast Recovery (FRec). The cwnd is
halved to adjust to the network congestion. Effectively,
this renders the sender unable to send any new data since
the unacknowledged data is more than the updated cwnd.

Various acks received during Fast Recovery
1) Duplicate acks: These result into an artificial inflation of

the cwnd by one maximum segment size each, allowing
at least one segment of new data to be sent.

2) Partial acks: These acks result into partial deflation of
cwnd equal to the amount of data that is acknowl-
edged by the ack. Cwnd is also artificially inflated by
one maximum segment size. The requested segment is
retransmitted and new data is sent, if allowed by the
updated cwnd.

3) Full ack: This pushes the sender out of FRec and into
congestion avoidance. Cwnd shrinks to the value that it
was at when this instance of FRec started. New data can
be sent as allowed by the updated cwnd.

The above discussion can be summarized as follows.
Assume that the sender is using the NewReno variant of

TCP, with limited transmit in effect, and has infinite amount
of data to send. Whenever such a TCP sender receives an
ack, the sender’s cwnd is updated, such that it allows sending

START

LABEL

DON’TLABEL TRANSIENT

WAIT ARRESTED

LABELLed segment sent

Un-LABELLed segment sent
LABELLed ack received

Ack receivedandIn FRec

Cannot sendandIn FRec

Ack received and can send

Can send

Third dummy ack received.Invoke RTO

Full ack received and cannot send.counter = 3Send first dummy packet
First or second dummy ack received. Decrementcounter and send another dummy packet

Cannot sendandnot in FRec.counter = 3Send first dummy packetPartial or duplicate
ack received

Fig. 7. PLATO state machine

out previously unsent data. These aforementioned acks do not
include the partial ack, the third duplicate ack and the full ack.
Furthermore, even if the cwnd allows, the sender will only be
able to send, if data is available from the application layer.

As described in Section III-A, PLATO decides to label a
segment on receiving a labelled ack. This decision is for a
segment that will be sent in the future. Predicting the future
cwnd is almost impossible, owing to the dynamic network
conditions. Even if the current cwnd does not allow sending
new data, it does not imply that the ack clock is dead. Also, the
availability of application data is an important factor. PLATO
is designed to be robust enough to withstand any of the
possible occurrences described above. In the next subsection,
we describe the complete PLATO scheme. The description is
based on the scenarios that may occur and the corresponding
response of PLATO.

C. PLATO State Machine

PLATO is designed as a modification to TCP NewReno and
implemented as a simple state machine, shown in Fig. 7. This
state machine runs in parallel with the TCP NewReno state
machine. PLATO does not modify TCP’s congestion control
mechanism. It only decides which segments and acks should
be labelled. This section describes the PLATO state machine
in detail.

LABEL: After the three way handshake to establish the
connection, PLATO is initialized into the LABEL state. The
first data segment sent in this state is labelled. Thereafter, it
promptly exits this state and enters the DON’T LABEL state.

DON’T LABEL: All the segments sent in this state will not
be labelled. PLATO remains in this state until a labelled ack

Fig. 8. Inability to send new data in response to labelled ack is not indication
of stalled cwnd. Some in-flight acks may allow cwnd to send data later.

is received. This ack is generated by the TCP receiver on re-
ceiving the labelled segment, that was sent earlier. Thereafter,
PLATO enters the TRANSIENT state.

The result of this interleaved labelling is that sender sends
a labelled segment, once every RTT, assuming of course that
there is always data to send.

The packets carrying the labelled segment/ack are the heart-
beat packets. If, upon receiving a labelled ack, the TCP sender
is able to send out a labelled segment, the heartbeat continues.
But, as described earlier, this may not always be possible.
In such a case, the heartbeat is said to be absorbed by the
TCP sender, since there are no longer any labelled segments
and/or acks, in-flight in the network. PLATO identifies such
occurrences, in the TRANSIENT state and then takes measures
to restart the heartbeat.

TRANSIENT: In this state PLATO decides whether new
data can be sent, depending on the current cwnd and the
availability of data from the application layer. If new data
can be sent, PLATO enters label state and a labelled segment
is sent. Thus the heartbeat continues. However, if no data
can be sent at this moment and TCP is in FRec, PLATO
either enters the WAIT state. Alternately, PLATO enters the
ARRESTED state if no data can be sent at this moment, and
TCP is currently in slow start or congestion avoidance.

WAIT: This state handles the case when a labelled ack is
received in FRec and TCP is unable to send new data. This can
happen if the received labelled ack was the third duplicate ack,
a partial ack, or the sender simply has no more data to send.
In such a case, PLATO waits for TCP to exit FRec. Suppose,
during the course of this instance of FRec, receipt of an ack
allows the sender to send new data, PLATO exits WAIT and
enters LABEL and the heartbeat continues. However, if TCP
exits FRec and the heartbeat remains absorbed, then it enters
ARRESTED state. This may occur because, on receiving a
full ack, the cwnd shrinks again.

ARRESTED: The ARRESTED state signifies that the
heartbeat has been absorbed by the sender, while TCP is in
the slow start or congestion avoidance state. Inability to send
new data in response to a received ack is not an indication of
a stalled cwnd or a dead ack clock. It is quite possible that
some future acks, still in-flight in the network may increment

the cwnd such that the heartbeat may restart itself. Such a
scenario is described in Fig. 8. Thus, it is prudent to wait
for data from the application layer and/or pending acks to
increment the cwnd. Note that such a scenario may also arise
from reordering of packets in the network. PLATO handles
this as follows:

Upon entering ARRESTED state, a counter is initialized
to three. A dummy packet is sent which carries the label but
no data. On arriving at the receiver, this dummy packet is
discarded and a dummy ack, carrying the label is sent back to
the sender. When such a dummy ack is received and PLATO
is still in ARRESTED state, the counter is decremented and
another dummy packet is sent. This process is done thrice, i.e.
in all, three dummy packets are sent. This procedure signifies
waiting for three RTTs for any pending segments/acks on the
network to arrive at either host. If the third duplicate ack is
still received in ARRESTED state, it implies that the ack clock
is indeed dead and the cwnd is stalled.

If standard TCP NewReno is used, without PLATO, TCP
would wait 200 ms for the RTO to restart the ack clock.
This is where PLATO provides a superior loss detection
mechanism. Since, after the receipt of the third duplicate ack
in ARRESTED state, it is clear that the ack clock is dead,
the RTO can be invoked immediately. Thus PLATO is able to
detect loss in at most three RTTs which are of the order of a
few hundred microseconds, rather than the far more expensive
200 ms RTO.

Note that, here, the difference between TCP NewReno
and PLATO is the loss detection mechanism. After the loss
is detect, both PLATO and TCP would follow the same
mechanism of RTO to recover from the loss.

There is good reason to implement two separate states
WAIT and ARRESTED, both of which deal with absorption of
heartbeat packets. FRec is a robust loss recovery mechanism.
This means that if no retransmitted segment is lost, all the
segments that are sent before the initiation of FRec, will be
recovered in the same instance of FRec. The primary aim
of PLATO is to keep the ack clock going. By ensuring that
retransmitted packets are not dropped, this aim is already
achieved. But slow start and congestion avoidance do not enjoy
such luxury. This is why there are two separate PLATO states
to handle absorption of heartbeat, depending on the current
TCP state.

An important case that may arise, but has not been included
in the state diagram is as follows. All the data sent has
been acknowledged. A labelled ack is received, but the sender
cannot send any more data since there isn’t anymore data to
send. In such a case, PLATO would unnecessarily send dummy
packets. To handle this, a simple change is required to check
whether all the previously sent data has been acknowledged.
This scenario is more expected to occur in non-incast appli-
cations such as telnet.

P

Fig. 9. WRED and PLATO drop probability for regular packets.

P

Fig. 10. Queuing mechanism for PLATO

IV. IMPLEMENTATION

A. Identification of special packets

The special labels that allow the switch to identify the
heartbeat packets and packets carrying the retransmitted seg-
ment, are placed at the TCP sender and TCP receiver. This
is achieved by using the existing Differentiated Services Code
Point (DSCP) field in the IP header [20]. This field is used
to prioritize traffic to achieve Quality of Service (QoS). The
DSCP filed is a 8 bits long and the last two bits are used
for ECN. For the switch to identify the labelled packets and
retransmitted packets, only a single bit is needed in the DSCP
field.

B. Switch Implementation

We had assumed in the preceding text that the switch would
not drop any heartbeat packets. If standard drop tail queueing
is used, eventually the buffer would overflow and the heartbeat
packets may be dropped. A naive method to ensure that a
heartbeat packet is never dropped would be to discard an
existing unlabelled packet from a full buffer to make space for
the incoming labelled packet. Although it is fine in theory, it
turns out that this scheme is impractical to implement. Firstly,
to find an unlabelled packet to discard from within the buffer,
would require a linear search from the head of the buffer. This
results into an O(n) time complexity. Secondly, to discard
a packet, would require the maintenance of a double linked
list, instead of the FIFO, for the packets. This significantly
increases the number of memory access required for storing
any packet in the buffer.

We present a modified buffer management scheme, shown
in Fig. 10, to support PLATO. It employs a simple FIFO to
enqueue and dequeue the packets. There exists an intermediate
threshold ThP . If the instantaneous queue length is less
than ThP , all the incoming packets are enqueued with equal

preference. On the other hand, if the instantaneous queue
length is greater than or equal to ThP , only the packets
carrying the labelled segment/ack, and retransmitted segment
will be enqueued. Thus the switch preferentially enqueues
certain packets beyond ThP . This simple modification allows
the switch to differentiate between the incoming packets and
allow the senders to avoid RTO.

Cisco IOS 12.0 supports a queuing mechanism called
Weighted Random Early Detection (WRED). This uses the bits
of the DSCP field to establish IP precedence. A packet with
higer IP precedence is given a greater enqueue preference. The
WRED feature is already available on low end cisco catalyst
3550 series switches which cost less than $500. This feature
can be easily configured for PLATO.

PLATO uses the instantaneous queue occupancy rather than
the average queue occupancy used by WRED. (1) is the
exponential moving average used by WRED to calculate the
average queue length l.

lnew avg = (lold avg × (1− n)) + (linstantaneous × n) (1)

For n = 1, the average will be equal to the instantaneous queue
length.

As shown in Fig. 9, unlike WRED, PLATO does not use a
probability to decide whether a packet should be dropped or
not. Such functionality can be easily achieved by making the
minimum threshold and maximum threshold of WRED, equal
to the PLATO threshold ThP .

V. PERFORMANCE EVALUATION

In this section we study the impact of PLATO on the perfor-
mance of TCP NewReno in the incast scenario. We compare
PLATO’s performance with state of art incast solutions Incast
Control TCP (ICTCP) [13] and Data Center TCP (DCTCP)
[12]. We also compare PLATO’s performance against standard
Tcp NewReno with reduced values of RTOmin, 10 ms and
1 ms. All the simulations have been performed in a NS3
testbed with the star topology of Fig.1. The link bandwidth
is 1 Gbps and the link delay is 25 µs making the base RTT
100 ms. In all the simulations, the application at the incast
senders sends 1 SRU to the incast client. The application sends
the data as quickly as possible to the TCP layer which is
then responsible for ensuring successful delivery. The client
application considers the job as complete only when all the
senders have successfully transferred all their data to the client.
The switch, which is shared by all the flows, employs the
WRED functionality mentioned earlier with the minimum and
maximum threshold set to ThP . Each simulation is run for
100 rounds and the data represents the 95th percentile. A
different random seed is used for each round. The metric for
performance comparison is the goodput, which is calculated
as the ratio of the total data transferred by all the servers to
the client and the time required to complete the data transfer.

Fig.11 and Fig.12 show the performance of PLATO for short
lived flows and long lived flows respectively. The simulations
have been done for ThP values of 0.3, 0.5 and 0.7 of maximum
queue length. We observe that in both long lived flows and

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120 140 160

G
oo

dp
ut

 (
M

bp
s)

Number of Senders

SRU=10KB, Th=0.3
SRU=10KB, Th=0.5
SRU=10KB, Th=0.7

Fig. 11. Effect of ThP on the performance of PLATO for short lived flows.
Switch buffer is 256 KB and SRU is 10 KB

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

G
oo

dp
ut

 (
M

bp
s)

Number of Senders

SRU=100KB, Th=0.3
SRU=100KB, Th=0.5
SRU=100KB, Th=0.7

Fig. 12. Effect of ThP on the performance of PLATO for long lived flows.
Switch buffer is 256 KB and SRU is 100 KB

short lived flows, the value of the ThP does not have a
significant impact on the overall performance. PLATO is easily
able to support over 90 senders, for long lived flows, before a
significant loss in goodput. For short lived flows, this number
is even larger, around 120 senders. Also, PLATO is able to
achieve nearly 90% link bandwidth for long lived flows. We
observe that the catastrophic drop in throughput for the PLATO
simulations is owing to the loss of heartbeat packets. Since the
switch buffer size is limited, eventually, the space reserved for
the heartbeat packets, i.e. beyond the ThP , becomes full. This
leads to drop of heartbeat packets which causes PLATO to
rollback to TCP NewReno, since there are no more heartbeat
packets in the system.

Fig.13 shows the performance of PLATO for switch buffer
size of 256 KB and ThP 0.7, for various SRU sizes. We find
that for SRU sizes 50 KB and 100 KB, the performance is
nearly identical. The performance for SRU 10 KB is slightly
lower due to link under utilization. For SRU size 1 MB, the
performance is identical to SRU 100 KB and 50 KB till about
60 senders. Thereafter, we see a sudden drop in goodput. This
is because of one or more senders experiencing a 200 ms
timeout. For 1 MB SRU, owing to the large SRU size, the

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140 160

G
oo

dp
ut

 (
M

bp
s)

Number of Senders

SRU=10KB
SRU=50KB

SRU=100KB
SRU=1MB

Fig. 13. Performance of PLATO for switch buffer size of 256 KB, under
different SRU sizes. ThP is 0.7

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140 160

F
lo

w
 C

om
pl

et
io

n
T

im
e

(m
s)

Number of Senders

SRU=10KB
SRU=50KB

SRU=100KB
SRU=1MB

Fig. 14. Flow completion time, for PLATO flows. Switch buffer size is 256
KB and ThP is 0.7

flow completion time is of the order of 100 ms, even if a
sender doesn’t experience a timeout. Thus the goodput does
not drop to very low values despite the 200 ms timeout. For
10 KB SRU and 100 KB SRU, the flow completion time is
of the order of 10 ms. Thus the effect of a timeout event is
more prominent in 100 KB SRU and 50 KB SRU curves, as
is evident by the flow completion times shown in Fig.14.

Fig.15 shows the performance of PLATO under conditions
of small switch buffer size. The buffer size for this simulation
is 64 KB and ThP is 0.7. We find that the for SRU 10 KB
and 100 KB, the number of senders that PLATO can support
without incast is much lower in a smaller switch buffer (64
KB) than a larger switch buffer (256 KB). This is because,
when the buffer size is small, it quickly overflows, leading
to packet loss. Unless heartbeat packets are dropped, PLATO
detects the packet loss at the switch and retransmits the
corresponding packets. Since ThP value is 0.7, switch buffer
space equivalent to (64 * 0.3) KB is reserved for heartbeat and
retransmitted packets. Any sender can have at most 1 heartbeat
packet and 1 retransmitted packet in the network. Assuming

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50

G
oo

dp
ut

 (
M

bp
s)

Number of Senders

SRU=10KB, Th=0.7
SRU=100KB, Th=0.7

Fig. 15. Performance of PLATO for switch buffer size of 64 KB. ThP is
0.7

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10 20 30 40 50

F
lo

w
 C

om
pl

et
io

n
T

im
e

(m
s)

Number of Senders

SRU=10KB, Th=0.7
SRU=100KB, Th=0.7

Fig. 16. Flow completion time, for PLATO flows. Switch buffer size is 64
KB and ThP is 0.7

that both these packets are of maximum size 1500 bytes, at
least 6 senders that can be supported by this switch in the worst
case. Our simulation results show that in fact the number of
senders that are supported are much larger, around 20 for 100
KB SRU and 35 for 10 KB SRU. Thus the limiting factor
is the space reserved for the heartbeat packets. Fig.16 shows
the corresponding flow completion time for PLATO flows. We
observe that the flow completion time for the 100 KB SRU
curve increases dramatically after 20 senders. Since the buffer
space is very small, the hearbeat packets get dropped several
times during the life of an individual flow leading to successive
200 ms timeouts on a sender, and thus a large flow completion
time.

Fig.17 shows the performance of PLATO in the presence
of background flows. In this simulation, several PLATO in-
cast flows share the bottleneck link with 5 background TCP
NewReno flows. The application at the TCP NewReno senders
is the same as for PLATO senders. We find that PLATO flows
are able to achieve a high goodput, but the number of flows
that can be supported without incast is reduced. This is because
PLATO relies on availability of switch buffer space. In the

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50

G
oo

dp
ut

 (
M

bp
s)

Number of Senders

SRU=10KB, Th=0.7
SRU=100KB, Th=0.7

Fig. 17. Performance of PLATO with background TCP NewReno traffic.
Switch buffer size is 256 KB. ThP is 0.7

 0

 50

 100

 150

 200

 250

 300

 350

 0 10 20 30 40 50

F
lo

w
 C

om
pl

et
io

n
T

im
e

(m
s)

Number of Senders

SRU=10KB, Th=0.7
SRU=100KB, Th=0.7

Fig. 18. Flow completion time, for PLATO flows, when background TCP
NewReno flows are present. Switch buffer size is 256 KB and ThP is 0.7

presence of background traffic, the switch buffer available is
reduced an thus the number of incast senders that can be
supported is also reduced. Fig.18 shows the corresponding
flow completion time for PLATO flows.

Fig.19 and Fig.20 show the performance of PLATO com-
pared to ICTCP, DCTCP and TCP NewReno with reduced
RTOminvalues of 10 ms and 1 ms. The switch buffer is 256 KB
with ThP value 0.7. Sender SRU size is 10 KB for simulations
of Fig.19 and 100 KB for Fig.20. We find that while the
performance of ICTCP and DCTCP degrade very quickly as
the number of senders increases, PLATO is able to support
a much larger number of incast senders, without throughput
collapse. In Fig.19, PLATO is easily able to achieve a goodput
of 70% of link bandwidth, while it is even higher, around
90% in Fig.20, as the value of SRU is higher. We observe that
with such improved performance of PLATO is attributed to
the improved loss detection capabilities.

We also note that the apparent poor performance of ICTCP
and DCTCP in our simulations is attributed to the difference in

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140 160

G
oo

dp
ut

 (
M

bp
s)

Number of Senders

PLATO Th=0.7
ICTCP

DCTCP
RTO=1ms

RTO=10ms

Fig. 19. Performance of PLATO compared to DCTCP, ICTCP and TCP
NewReno with reduced RTOminvalues of 10 ms and 1 ms. Switch buffer is
256 KB and SRU is 10 KB. ThP is 0.7

switch buffer size, compared to that used in [13]3 and [12]4,
respectively. This is supported by the simulations of Fig.21
where a switch buffer of 2 MB is used. Here, we observe that
performance of both DCTCP and ICTCP improve compared
to simulations with smaller buffer size of 256 KB. Still,
performance of PLATO is significantly better, as it achieves
nearly 90% of the link bandwidth. The number of incast
senders that can be supported is also much higher.

In Fig.19, Fig.20 and Fig.21, we observe that the perfor-
mance of Tcp NewReno with reduced RTOminvalue of 10 ms
is consistently comparable to that of PLATO. This is expected
since the reduced RTOminvalue essentially reduces the idle
time for the sender. Thus, even though several senders may
experience timeout, the loss in goodput is not high. But it is
worth mentioning that the reduced RTOminvalue requires the
availability of a fine grained timer. PLATO is able to achieve
the same effect using heartbeat packets.

Fig.22 shows the instantaneous queue occupancy charac-
teristics for the incast setting of 45 senders sharing a 128
KB bottleneck switch buffer. Fig.23 shows the queue occu-
pancy for the incast setting of 80 senders sharing a 256 KB
bottleneck switch buffer. We see that at the very beginning,
almost all the packets in the switch are the heartbeat packets.
This corresponds to the senders sending the first LABELLed
segment. The dip in the queue occupancy corresponds to
the first instance of congestion where several senders suffer
packet loss. But the senders recover quickly using the three
duplicate acks. Thereafter, the queue occupancy stays close to
the threshold value. This shows that there are several packets
dropped. But the senders don’t suffer a RTO.

We also observe that the heartbeat packets are nearly 50%
of the total load on the switch. But it is important to note that
the heartbeat packets are not an additional load on the switch.
In fact, the heartbeat packets allow the switch to prioritize

3ICTCP simulations in [13] use a Quanta LB4G switch.
4DCTCP simulations in [12] use switches with buffer sizes of 4 MB and

16 MB

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140 160

G
oo

dp
ut

 (
M

bp
s)

Number of Senders

PLATO Th=0.7
ICTCP

DCTCP
RTO=1ms

RTO=10ms

Fig. 20. Performance PLATO compared to DCTCP, ICTCP and TCP
NewReno with reduced RTOminvalues of 10 ms and 1 ms. Switch buffer
is 256 KB and SRU is 100 KB. ThP is 0.7

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140 160

G
oo

dp
ut

 (
M

bp
s)

Number of Senders

PLATO Th=0.7
ICTCP

DCTCP
RTO=1ms

RTO=10ms

Fig. 21. Performance of PLATO compared to DCTCP, ICTCP and TCP
NewReno with reduced RTOminvalues of 10 ms and 1 ms. Switch buffer is
2 MB and SRU is 100 KB. ThP is 0.7

packets from amongst its existing load, so that the senders
can avoid RTO.

Fig.24 shows the instantaneous cwnd for an incast sender
with PLATO in effect. We observe that on several occasions,
the cwnd is reduced to half its original value. This corresponds
to loss detection and invocation of FRec. But the sender
doesn’t suffer from RTO.

VI. RELATED WORK

TCP incast throughput collapse is a widely studied and well
understood phenomenon. Incast was originally observed and
coined in [5]. The problem has been studied in [1], [2], [4]
to analyze the relationship between throughput collapse and
factors like the environment, topology factors, switch buffer
size, number of incast servers and size of Server Request Unit
(SRU).

Several papers attempted to solve the incast problem. For
example, [5] suggests to limit the number of incast senders
so as to prevent the queue buildup, and [21] gives a list
of application level strategies to work around the network

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 5 10 15 20 25 30 35 40

Q
ue

ue
 O

cc
up

an
cy

 (
B

yt
es

)

Time (ms)

Queue Limit = 128 KB
Th=0.7

Total Bytes in Queue
Heartbeat Packet Bytes in Queue

Fig. 22. Instantaneous queue occupancy for incast setting of 45 senders
sharing a 128 KB bottleneck switch buffer. SRU is 100 KB

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 10 20 30 40 50 60 70

Q
ue

ue
 O

cc
up

an
cy

 (
B

yt
es

)

Time (ms)

Queue Limit = 256 KB
Th=0.7

Total Bytes in Queue
Heartbeat Packet Bytes in Queue

Fig. 23. Instantaneous queue occupancy for incast setting of 80 senders
sharing a 256 KB bottleneck switch buffer. SRU is 100 KB

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 10 20 30 40 50 60 70

cw
nd

 (
B

yt
es

)

Time (ms)

cwnd
Heartbeat packet sent

Fig. 24. Instantaneous cwnd for an incast sender. Time instants when a
heartbeat packet is sent is indicated

limitation. Different solutions are explored by [2], including
the effectiveness using larger switch buffers, increasing SRU,
using other TCP variants, reducing the duplicated ack thresh-
old for triggering fast retransmit, or reducing the penalty of
retransmission timeouts. But the authors found none of these
can solve the throughput collapse convincingly whereas each
of them suffer from implementation difficulties. The idea of
using an RTO of orders of magnitude smaller, to make it
comparable to round trip time (RTT), is studied in detail by
[3]. It is straightforward, but has a major drawback of requiring
a fine-grained timer to implement it, which is not guaranteed
by the operating system or at a high computation cost.

Some proposals target the protocol. In [22], a modified TCP
retransmits unacknowledged packets probabilistically without
confirming their loss by three duplicated acknowledgement.
This tackles the problem of losing acks or massive loss of
segments in a short period of time, but it also requires a timer
to send packets. Thus it also needs a fine-grained timer to be
useful in a short RTT environment.

ICTCP [13] tries to regulate the total sending rate of
the incast transfer to prevent overwhelming the bottleneck.
It adjusts the receive window size of each connection to
make sure the aggregated rate is within bound. However,
implementing this requires an additional layer on top of TCP
layer to find the aggregate rate and adjust them accordingly.
Moreover, this is a incast-specific protocol which means an
incast application needs to explicitly choose to use this TCP
variant. Moreover ICTCP has the limitation that it can only
handle the last hop congestion.

DCTCP [12] assumes the incast throughput collapse is
due to the coexistence of incast traffic with long-lasting
background traffic, such that the latter consumes too much
bottleneck buffer. Therefore, it tries to gather data from the
Explicit Congestion Notification (ECN) bit of packets over
a round trip time to get a better sense of the network
congestion and react accordingly. However, as we can see in
our experiments, incast throughput collapse exists even if it is
not competing with background traffic for network bandwidth.

VII. CONCLUSION

TCP incast goodput collapse is caused by retransmission
timeout (RTO) at one or more senders, in response to dropping
of packets at the switch, in datacenter networks (DCN). The
dropping of packets is due to several parallel TCP flows over-
flowing the limited buffer space on the commodity switches
used in DCN. We propose a packet labelling scheme called
PLATO, which improves the loss detection capabilities of
TCP NewReno in the DCN paradigm. PLATO, when used in
conjugation with Weighted Random Early Detection (WRED)
functionality at the switch, allows TCP to detect packet loss
using three duplicate acks, instead of the expensive RTO. The
simulation results show that performance of PLATO is orders
of magnitude better than state-of-art incast solution Incast
Control TCP (ICTCP).

REFERENCES

[1] Y. Chen et al., “Understanding TCP incast throughput collapse in
datacenter networks,” in Proc. WREN, Aug. 2009.

[2] A. Phanishayee et al., “Measurement and analysis of TCP throughput
collapse in cluster-based storage systems,” in Proc. 6th FAST, Feb. 2008.

[3] V. Vasudevan et al., “Safe and effective fine-grained TCP retransmissions
for datacenter communication,” in Proc. SIGCOMM, Aug. 2009.

[4] J. Zhang, F. Ren, and C. Lin, “Modeling and understanding tcp incast
in data center networks,” in Proc. INFOCOM, Apr. 2011.

[5] D. Nagle et al., “The Panasas ActiveScale storage cluster: Delivering
scalable high bandwidth storage,” in Proc. Supercomputing, 2004.

[6] S. Shepler, M. Eisler, and D. Doveck, “Network file system (NFS)
version 4 minor version 1 protocol,” IETF RFC 5661, Jan. 2010.

[7] T. Haynes, “NFS version 4 minor version 2,” Internet Draft, Nov. 2011.
[8] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on

large clusters,” Commun. ACM, vol. 51, no. 1, Jan. 2008.
[9] V. Naidu, “Minimum RTO values,” end2end mailing list, Nov. 2004.

[10] V. P. M. Allman and E. Blanton, “TCP congestion control,” IETF RFC
5681, Sep. 2009.

[11] A. G. T. Henderson, S. Floyd and Y. Nishida, “The newreno modification
to TCP’s fast recovery algorithm,” IETF RFC 6582, Apr. 2012.

[12] M. Alizadeh et al., “Data center TCP (DCTCP),” in Proc. SIGCOMM,
Aug. 2010.

[13] H. Wu et al., “ICTCP: Incast congestion control for TCP in data center
networks,” in Proc. ACM CoNEXT, Nov. 2010.

[14] P. Zhang et al., “Shrinking MTU to mitigate TCP incast throughput
collapse in data center networks,” in Proc. 3rd ICCMC, 2011.

[15] D.-M. Chiu and R. Jain, “Analysis of the increase and decrease
algorithms for congestion avoidance in computer networks,” Comput.
Netw. ISDN Syst., vol. 17, no. 1, pp. 1–14, Jun. 1989. [Online].
Available: http://dx.doi.org/10.1016/0169-7552(89)90019-6

[16] K. Ramakrishnan, S. Floyd, and D. Black, “The addition of explicit
congestion notification (ECN) to IP,” IETF RFC 3168, Sep. 2001.

[17] S. F. M. Mathis, J. Madhavi and A. Romanow, “Tcp selective acknowl-
edgment options,” IETF RFC 2018, Oct. 1996.

[18] A. S.-W. Tam, K. Xi, Y. Xu, and H. J. Chao, “Preventing tcp incast
throughput collapse at the initiation, continuation, and termination,” in
Proceedings of the 2012 IEEE 20th International Workshop on Quality
of Service, ser. IWQoS ’12. Piscataway, NJ, USA: IEEE Press, 2012.

[19] M. Allman, H. Balakrishnan, and S. Floyd, “Enhancing TCP’s loss
recovery using limited transmit,” IETF RFC 3042, Jan. 2001.

[20] F. B. K. Nichols, S. Blake and D. Black, “Definition of the differentiated
services field (ds field) in the ipv4 and ipv6 headers,” IETF RFC 2474,
Dec. 1998.

[21] E. Krevat et al., “On application-level approaches to avoiding TCP
throughput collapse in cluster-based storage systems,” in Proc. Super-
computing, Nov. 2007.

[22] S. Kulkarni and P. Agrawal, “A probabilistic approach to address TCP
incast in data center networks,” in Proc. 31st ICDCS, Jun. 2011.

