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Abstract— An important challenge of running large-scale cloud
services in a geo-distributed cloud system is to minimize the over-
all operating cost. The operating cost of such a system includes
two major components: electricity cost and wide-area-network
(WAN) communication cost. While the WAN communication
cost is minimized when all virtual machines (VMs) are placed
in one datacenter, the high workload at one location requires
extra power for cooling facility and results in worse power
usage effectiveness (PUE). In this paper, we develop a model
to capture the intrinsic trade-off between electricity and WAN
communication costs, and formulate the optimal VM placement
problem, which is NP-hard due to its binary and quadratic
nature. While exhaustive search is not feasible for large-scale sce-
narios, heuristics which only minimize one of the two cost terms
yield less optimized results. We propose a cost-aware two-phase
metaheuristic algorithm, Cut-and-Search, that approximates the
best trade-off point between the two cost terms. We evaluate Cut-
and-Search by simulating it over multiple cloud service patterns.
The results show that the operating cost has great potential
of improvement via optimal VM placement. Cut-and-Search
achieves a highly optimized trade-off point within reasonable
computation time, and outperforms random placement by 50%,
and the partial-optimizing heuristics by 10-20%.

Keywords-Geo-Distributed, Cloud System, Virtual Machine
Placement, Resource Allocation, Electricity, Cost Optimization

I. INTRODUCTION

It is common practice for large cloud service providers
(CSPs) to run their own geo-distributed cloud systems. Each
cloud system consists of tens of geographically distributed
datacenters interconnected with high-capacity WAN leased
lines. For example, Google alone has deployed more than 30
datacenters worldwide [1], and Amazon Web Service (AWS)
uses at least 20 [2]. An example of geo-distributed cloud
system is shown in Figure 1. Some important reasons why
CSPs adopt smaller, geo-distributed datacenters are: (1) Mega-
datacenters are difficult to build, thus delay the time-to-market.
(2) The requirements for space and cooling cause building
costs to elevate as datacenters grow large [3]. (3) Physical
limitations at a geographic region, such as land size and local
energy availability.

Improving the cost of operating services is an important
challenge for geo-distributed CSPs. It is because a CSP may
provide a wide category of cloud services, such as content
distribution, web storage, online collaboration and social net-
working. These services are usually free or provided at a fixed

Fig. 1. An example of geo-distributed cloud system

monthly subscription charge, and cost optimization is subject
to CSP’s discretion.

In this paper, we focus on two major contributors of cost
during cloud service operation: (1) Electricity cost, the cost of
powering VMs when they are instantiated in the datacenters.
(2) WAN communication cost, incurred by communication
between VMs across different datacenters. We choose the
above two terms because they are recurring costs, which are
repeatedly charged on CSPs as long as services continue, and
can be adjusted by VM placement. Upfront captital costs,
such as buildings and servers, are one-time costs. They are
pretty much fixed before VM placement stage, and cannot be
adjusted dynamically, and therefore are left out of the scope
of our study. The VM placement problem is further motivated
by the following observations:
1. Larger datacenters are power inefficient: [4] shows that
the cooling facility can consume up to 33% of a datacen-
ter’s power usage, compared to 30% by the servers. This
significantly affects the power efficiency of a datacenter. The
datacenter industry usually measures the power efficiency of
a datacenter with the metric called power usage effectiveness
(PUE) [5], defined as follows:

PUE =
Total datacenter power

Power consumed by IT equipments
(1)

Ideally all power consumed by a datacenter should go to
the servers (PUE = 1.0). However, [5] reports that the PUE
is close to 2.0 for conventional datacenters, while the best
achievable case today is 1.13. The main reason for inflated



PUE values is cooling. Concentrating service workload at
one datacenter can result in elevated demand for cooling, and
thus worse datacenter PUE, and finally a penalizing electricity
bill. To this end, [3] proposes to improve a datacenter’s
power efficiency by distributing workload allocation to more
locations. [6] pushes this concept to extreme by advocating
the idea of nano datacenters, which are all-natural-cooling.
Workload is distributed to a myriad of nano-datacenters and
enjoy excellent power efficiency.
2. High WAN communication cost across datacenters:
Usually a CSP connects its own geo-distributed datacen-
ters with dedicated WAN links. Long-haul, inter-datacenter
communication is significantly more expensive than intra-
datacenter one [7][8]. For example, AWS [9] charges inter-
datacenter transfer for $0.120-0.200/GB across geographic
regions, $0.01/GB in the same region, and no charge for intra-
datacenter communication. Due to such a large gap, a CSP
may want to keep as much inter-VM communication inside
datacenters as possible. This implies a more concentrated VM
placement scheme.

There is intrinsic conflict between the two components in
the operating cost. While a distributed VM placement results
in favorable electricity cost, WAN communication cost is
minimized when all VMs are put together. Minimizing one
component may harm the optimality of the other. However,
real service traffic patterns have shed some light on the op-
timization problem. The inter-VM traffic profile of Microsoft
Bing in [10] shows the following characteristics: (1) The inter-
VM traffic matrix is very sparse. Very few of the VM pairs
actually communicates. (2) The VMs usually form multiple
clusters. A majority of inter-VM traffic is with these clusters,
while little traffic travels across clusters. These observations
implicate that we only need to keep VMs in the same cluster in
one datacenter to minimize WAN communication cost, instead
of allocating everything to one location.

There are still some other factors to be considered. For
example, the electricity price diversity at different locations.
Take United States for example. The electricity prices at New
York City (a.k.a. New Zone J Hub) is $62.71/MWh on-peak
and $39.19/MWh off-peak, which are about double of the
prices at Mid-Columbia Hub at Washington State, which are
$29.10/MWh on-peak and $19.98/MWh off-peak.

We develop a model for VM placement in a geo-distributed
cloud system, and introduce the Cost-Aware VM Placement
Problem (CAVP). The objective of minimizing the operating
cost. We will show that CAVP is NP-hard. Therefore, it is not
practical to exhaustively search for optimum in large problem
instances. We propose Cut-and-Search, a metaheuristic two-
phase algorithm for solving CAVP. This scheme not only
outperforms random placement by over 50% in the best
case, but also have significant improvement over other partial-
optimizing heuristics.

The contributions of this paper are as follows: (1) We
develop a model for a geo-distributed cloud system capturing
the intrinsic conflict between electricity and WAN communi-
cation cost, then formulate it into the CAVP problem. (2) We

propose a cost-aware metaheuristic algorithm for CAVP, and
demonstrate its performance.

The paper is organized as follows: Section II discusses
related works of geo-distributed cloud computing and VM
placement. Section III describes the system model we use
and formulates the CAVP problem, with some notes on its
complexity. In Section IV our algorithm, Cut-and-Search, is
detailed. In Section V we evaluates Cut-and-Search against
other heuristics. Concluding remarks are in Section VI.

II. RELATED WORKS

Optimal resource placement in cloud services has been a
topic gaining much attention today. [8] provides a back-of-
the-envelope cost breakdown of data center operation, and
indicates the possibility of cost reduction via optimal VM
placement and datacenter sizing.

Several works have addressed intra-datacenter VM place-
ment issue. [11] minimizes the bandwidth usage inside a single
datacenter with traffic-aware VM placement. [12] proposes an
abstraction for VM placement in order to provide guaranteed
bandwidth to tenants and save datacenter network resource.
[10] develops an optimization framework seeking the best
trade-off between bandwidth reduction and fault tolerance.
These works focus on intra-datacenter environments, while our
work focuses on multi-datacenter system considering diversed
power pricing and efficiency at different geographic locations.

The workload placement problem is also extensively studied
in the context of geo-distributed cloud systems. [13] optimally
places VMs in distributed clouds with the main objective of
minimizing the maximum latency (a.k.a. diameter) in VM
clusters. [14] addresses the data placement issue for geo-
distributed cloud services, and the main goal is to minimize
the observed client request latency. These works focus on
objectives related to inter-VM traffic, but do not pay attention
to costs related to VM instance itself, such as electricity
consumption.

There are several related works addressing optimal work-
load placement in distributed datacenters with heterogeneous
pricing scheme and resource constraints. [15] aims to find
optimal resource placement and workload assignment in a
content distribution network (CDN) to minimize the cost of
content transfer to end users. [16] uses statistical multiplex-
ing to mitigate bandwidth cost between datacenters and end
users, and takes datacenters’ electricity price diversity into
consideration. [17] cuts electricity bill by intuitively directing
workload to the datacenters with lower spot prices. These
works generally ignores inter-VM traffic and thus can only
cover a part of overall operating cost in a geo-distributed cloud
system.

To the best of our knowledge, our work is the first to
consider both electricity cost and WAN communication cost,
and address the intrinsic conflict between the two components,
compared with works mentioned above most of which consider
only part of the overall operating cost of a cloud system.



III. THE COST-AWARE VM PLACEMENT PROBLEM

A. System Model

We consider the scenario of deploying a large-scale cloud
service in a geo-distributed cloud system. Table I summarizes
the definitions and symbols used in problem formulation.
1. The cloud service pattern: Let V denote the set of V
VMs used by the cloud service, and v, v′ = 1, 2, ......, V be
the indices of these VMs. The power consumption of each
VM v is denoted by Pv . The bandwidth demand between any
pair of VMs (v, v′) is denoted by Tvv′ .
2. The geo-distributed cloud system: Let D denote the set of
D geo-distributed datacenters in the cloud system, and d, d′ =
1, 2, ......, D be the indices of datacenters. For datacenter d, the
total power consumption is denoted by Pd, the electricity price
is Ed, and the quota of power provided by local grid is Qd.
We assume that each pair of datacenters is connected by a
dedicated WAN link. The links are billed based on the actual
usage over a billing period. We denote the unit cost of data
transfer between datacenters d and d′ by Cdd′ . We ignore the
costs of intra-datacenter communication, since it is very low
compared with WAN. That is, Cdd = 0,∀d ∈ D.
3. Modeling power efficiency at datacenters: We use the
notation xvd to signal the allocation of VM v to datacenter
d. xvd = 1 when v is allocated to d, and 0 otherwise. The
set of all xvd is called a state, denoted by X . We define the
workload at d as wd =

∑
v∈V

Pvxvd. [3][6] have demonstrated

that when workload at a datacenter is low, it is possible to
rely on natural cooling and eliminate cooling facility. We
develop an approximate model as follows: For datacenter d,
when wd ' 0, the cooling facility is off and the datacenter
has a close-to-ideal PUE value, denoted by PUELo

d . As wd

increases, the demand for cooling rises and PUE increases. We
assume that the measured value of PUE when wd = Wd, the
measured PUE value is PUEHi

d . Then we approximate the
relationship between Pd and wd with a quadratic polynomial
function, defined as (2), and illustrated in Figure 2:

Pd(wd) = αwd
2 + βwd + γ (2)

α, β and are constants satisfying P ′
d(Wd) = 2αWd + β =

PUEHi
d , and P ′

d(0) = β = PUELo
d . The electricity cost at

datacenter d is thus fdE = Ed×Pd. We assume that datacenters
can smartly turn off servers when there is zero load, and
therefore γ = 0.

B. Problem Formulation

Refer to the symbol definitions in Table I, we propose and
formulate the Cost-Aware VM Placement (CAVP) problem as
follows:

Fig. 2. Relationship between Pd and wd.

TABLE I
SYMBOLS USED IN CAVP PROBLEM FORMULATION

Symbol Meaning
Input Parameters
V The set of VMs used by the cloud service
D The set of datacenters in the cloud system
v, v′ = 1, 2, ......, V The indices of VMs in V
d, d′ = 1, 2, ......, D The indices of datacenters in D
Pv Power consumption of VM v
Tvv′ Traffic demand between VM v and v′

Qd Quota of power provided to datacenter d
wd Workload at datacenter d
Wd The point when wd = Wd, PUE is PUEHi

d
Pd(wd) Total VM power consumption at datacenter d,

which is a function of placement wd

Ed Electricity price at datacenter d
Cdd′ Unit transfer cost between datacenters d and d′

PUELo
d , PUEHi

d PUE values at datacenter d at wd = 0,Wd

Decision Variables
xvd Allocation of VM v to datacenter d

1 if allocated, 0 otherwise.
X A state. X = {xvd, ∀v ∈ V, d ∈ D}
Cost Components
f(X) Total operating cost
fE(X) Total electricity cost
fC(X) Total communication cost
fd
E Electricity cost at datacenter d

min
X

f(X) = fE(X) + fC(X) (3)

fE(X) =
∑
d∈D

fdE(Pd) (4)

fC(X) =
1

2

∑
v,v′∈V

∑
d,d′∈D

xvdxv′d′Tvv′Cdd′ (5)

s. t. xvd = {0, 1} ∀v ∈ V, d ∈ D (6)∑
d∈D

xvd = 1 ∀v ∈ V (7)

Pd ≤ Qd ∀d ∈ D (8)

As described in (3), the CAVP problem’s objective is to
minimize the geo-distributed cloud system’s operating cost.
The details of electricity cost and WAN communication cost
are described in (4) and (5), respectively. The CAVP problem



is subject to the following constraints: All decision variables
are binary integers, as indicated by (6). (7) ensures that
every VM is assigned, and assigned to exactly one datacenter.
(8) represents the constraints of power availability at each
datacenter.

C. Problem Complexity and Scaling to Large Cloud Services

In CAVP’s formulation, all decision variables are binary
integers. The objective function (3) contains quadratic terms
of xvd. Therefore, the CAVP problem belongs to the category
of Binary Quadratic Programming (BQP) problems. BQP
problems are known to be NP-hard in general cases[18].

Large-scale cloud services usually use tens of thousands of
VMs in total. Under such scale, solving the optimization prob-
lem may still be computationally overwhelming. In practice,
we can apply some coarsening preprocessing [10] to reduce
the scale of problem instance. This can be done by greedily
aggregating high communication VMs into small groups of
a configurable size limit, and treat these groups as elemental
unit of placement, i.e. VMs in CAVP problem formulation.

IV. ALGORITHM

CAVP is known to be NP-hard. Exhaustive search method
is not feasible for problem scale larger than several tens of
VMs [18]. Therefore our goal is to develop an approximation
algorithm that significantly reduces operating cost within a
reasonable computation time. We are motivated to take a
metaheuristic (iterative searching) approach due to the follow-
ing facts: (1) fE(X) and fC(X) are intrinsically conflicting.
Optimal trade-off is difficult to achieve with a straightforward
heuristic. (2) The objective function f(X) is a convex function.
No local minimum exists and any neighbor state that improves
the cost is one step closer to the global minimum. A neighbor
state is defined as any state that reallocates one VM to a
different datacenter from the current state.

The most basic metaheuristic algorithm is greedy random
walk (GRW), which randomly generates an initial state, and
for each iteration, a neighbor state is generated and accepted as
long as it decreases the cost. Our two-phase algorithm, CUT-
and-Search, improves search efficiency by adopting two design
principles: (1) Find a low starting point. In the first phase,
we generate an initial placement having fC(X) optimized
by a low-complexity graph partitioning algorithm. (2) Choose
the best move. In the second phase, the algorithm iteratively
searches among multiple neighbor states for the one having
steepest descent in f(X). The details of Cut-and-Search are
as follows:
1. First phase: We consider the graph representation of the
cloud service, G = (V, E). Each node v is assigned with a
weight equal to Pv , and each edge (v, v′) has a weight equal
to Tvv′ . We first min-cut G into D partitions, S1, S2, ......, SD,
so that the weight sum of cross-partition edges is minimized.
We then map partitions to datacenters bijectively. To avoid
high-rising PUE, we start with a balanced cut, where each
partition’s total power consumption is about the same value
L =

∑
v∈V

Pv/D. This part is similar to the classic balanced

Algorithm 1 Phase 1-1: Grouping VMs
Input: G(V, E): Graph representation of cloud service as

described in Section III-C.
L: Upper-bound of total power of each group.

Output: S1, S2, ......, SD: VM groups.
1: V ′ ← V
2: S1, S2, ......, SD ← φ
3: power(Sy)← 0 ∀y = 1, 2, ......, D

4: while V ′ not empty do
5: for y = 1, 2, ......, D do

6: v = argmax
v∈V′

( ∑
v′∈V′,v′ 6=v

Tvv′

)
7: AddToGroup(v, Sy)

8: while ∃v ∈ V ′, F it(v, Sy) = 1 do

9: ṽ = argmax
v∈V′,F it(v,Sy)=1

( ∑
v′∈S

Tvv′

)
10: AddToGroup(ṽ,Vy)
11: end while
12: end for
13: end while

14: function ADDTOGROUP(v, S)
15: S ← S ∪ v, V ′ ← V ′ − v
16: power(S) = power(S) + Pv

17: end function

18: function FIT(v, S)
19: if power(S) + Pv ≤ L then Return 1
20: else Return 0
21: end if
22: end function

Algorithm 2 Phase 1-2: Mapping groups to datacenters
Input: S = {S1, S2, ......, SD }: The set of unmapped

groups; D: Set of datacenters
Output: X: Initial state

1: D′ ← D
2: while S not empty do
3: S = argmax

S∈S

∑
v∈S,v′ /∈S

Tvv′

4: d = argmin
d∈D′

∑
d′ 6=d

Cdd′

5: Allocate all VMs in S to d.
6: S ← S − S,D′ ← D′ − d
7: end while

minimum k-cut problem except that each node has a weight Pv

and that we limit the each partition by its total node weight,
not number of VMs.

Algorithm 1 provides a greedy solution to the minimum-cut
problem. At the start of creating a partition S, the algorithm
first identifies the unallocated VM that has maximum amount
of traffic associated to it, and allocate it to the empty partition.



The algorithm then repeatedly finds and allocates to S the
unallocated VM with most traffic to and from VMs are already
in S, until no more VM can fit in S without breaking the L
limit. After D balanced partitions are constructed, Algorithm
2 optimizes fC(X) by greedily mapping the group with higher
external traffic to the datacenter with smaller sum of unit
transfer costs on links attached to it, and vice versa.
2. Second phase: The first phase has generated an initial
placement with an minimized fC(X), but the overall cost
f(X) is yet taken care of. We further improve the result by
iteratively searching for the neighbor state causing steepest
descent in f(X). The large problem scale prevents the algo-
rithm from exhaustively testing all possible neighbor states. In
practice, during each iteration, we sample N feasible neighbor
states, and accept the one with most negative ∆f(X). Since
current state and the neighbor state differ only in one VM,
∆f(X) can be efficiently derived by calculating the partial
costs associated with that VM. If no sampled moves reduce
f(X), we discard these samples and go to next iteration. The
algorithm halts if it reaches I1 iterations, or f(X) remain
unchanged for I2 iterations. N , I1 and I2 are configurable
parameters.

V. PERFORMANCE EVALUATION

In this section, We evaluate Cut-and-Search by simulation
over multiple cloud service patterns. We first describe the setup
of simulation, then the results and related discussion.

A. Experiment Setup

1. Geo-Distributed Cloud Systems: We generate synthetic
distributed cloud systems by randomly selecting D = 20
locations within mainland United States. For the electricity
prices Ed, we incorporate the latest market data provided
by Federal Energy Regulatory Commission (FERC) [19], and
map each location to the nearest hub’s average spot price.

For WAN link bandwidth costs, we adopt a pricing model
similar to Amazon EC2 Internet Data Transfer [9]. There
is no charge for intra-datacenter (a.k.a. availability zone)
communication; bandwidth cost is lower for links with short
earth surface distance, and is much higher for long-haul links.
2. Cloud Service and Traffic Patterns: We design multiple
cases of cloud services and their traffic patterns by following
the observations made in [10]. We synthesize five data sets, of
which the numbers of VMs and clusters are shown in Table
II. The total number of VMs is fixed, but the clusters’ sizes
can be different.

TABLE II
DATA SETS USED IN OUR SIMULATION

Data Set 1 2 3 4 5
# of VMs 1000

# of clusters 1 5 10 50 100

3. Benchmarks: We compare our solution with three other
heuristics: Random Placement, and partial-optimizing algo-
rithms like Greedy-Electricity-Cost (GEC) and Minimum-k-
Cut. The GEC heuristic greedily optimizes fE(X) by allocat-

Fig. 3. Total costs resulting from different algorithms over multiple data
sets. For each data set, the results are normalized to the random placement
case.

Fig. 4. Cost structure resulting from each algorithm on data set 3. All results
are normalized to f(X) of random placement.

ing VMs one by one to the datacenter with lowest ∆fE(X)
available then, but pays no attention to fC(X). The Minimum-
k-Cut heuristic minimizes fC(X) by applying Algorithm 1 and
2, but pays no attention to fE(X).

B. Evaluation Results

1. Total cost: In the first experiment, we synthesize a multitude
of cloud service data sets. Five of these data sets are shown
in Table II. The data sets are evaluated on a common 20-
datacenter cloud system, and compare the total costs resulting
from the four algorithms. The results are shown in Figure
3. As seen in Figure 3, Cut-and-Search outperforms random
placement by 18% in f(X) improvement on data set 1, and
more than 60% on data set 5. Our algorithm also outperforms
GEC and Minimum k-cut by 10 to 20 %.

Cut-and-Search performs better in service scenarios with
small-cluster traffic patterns. It is because with small clusters
in traffic pattern, it is easier to put the whole cluster, and thus
keep a large portion of inter-VM traffic inside datacenters,
yielding very little WAN communication. On the contrary, with
an all-to-all traffic pattern, like data set 1, Cut-and-Search can
present less improvement, due to the fact that a considerable
portion of traffic still has to travel the WAN links.
2. Looking into the cost structures: In the second experi-
ment, we compare the cost structures resulting from the our
heuristics and three other benchmarks on data set 3. The data



set has a 1000-VM traffic pattern divided into 50 clusters.
GEC achieves lowest fE(X) among all four algorithms as
expected. However, Cut-and-Search compromises only slightly
in fE(X), but has much lower fC(X). This indicates that only
partially optimizing one of the two cost components is far from
reaching the best trade-off between them.
3. Efficiency of iterative search: During the second phase
algorithm, i.e. the iterative search, we sample N = 100
feasible moves in each iteration and sets termination condition
to I1 = 30000 iterations, or I2 = 500 iterations without cost
change. On average, Cut-and-Search takes 76.96 seconds to
complete in each run, and 13248 iterations to terminate.

VI. SUMMARY

In this paper, we consider the problem of placing VMs
across multiple geo-distributed datacenters with the objective
of optimizing the overall operating cost. In the CAVP prob-
lem formulation, we capture the intrinsic trade-off between
electricity cost and WAN communication cost, as well as the
electricity price diversity at different geographic locations. Due
to the NP-hardness, exhaustive search is not feasible. To this
end, we develop Cut-and-Search, a two-phase metaheuristic
algorithm that approaches optimal trade-off point and thus
minimizes the operating cost.

We simulated Cut-and-Search against three other heuristics
on multiple cloud service patterns. The results shows that
the potential of performance improvement is significant, and
partial-optimizing heuristics, such as Greedy-Electricity-Cost
and Minimum k-cut, are not sufficient to reach best results.
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