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ABSTRACT
Software-Defined Networking (SDN) enables flexible flow
control by caching policy rules at OpenFlow switches. Com-
pared with exact-match rule caching, wildcard rule caching
can better preserve the flow table space at switches. How-
ever, one of the challenges for wildcard rule caching is the
dependency between rules, which is generated by caching
wildcard rules overlapped in field space with different pri-
orities. Failure to handle the rule dependency may lead to
wrong matching decisions for newly arrived flows, or may
introduce high storage overhead in flow table memory.

In this paper, we propose a wildcard rule caching system
for SDN named CAching in Buckets (CAB). The main idea
of CAB is to partition the field space into logical structures
called buckets, and cache buckets along with all the associ-
ated rules. Through CAB, we resolve the rule dependency
problem with small storage overhead. Compared to previ-
ous schemes, CAB reduces the flow setup requests by an
order of magnitude, saves control bandwidth by a half, and
significantly reduce average flow setup time.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design

General Terms
Design, Standardization

Keywords
SDN, Wildcard Rule Caching, Buckets

1. INTRODUCTION
Software-Defined Networking (SDN) enables network in-

novations and provides flexible flow control over network
traffic. SDN proposes a variety of network policies for access
control, traffic engineering, and energy efficiency to enhance
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the management of the network. These policies can be real-
ized through the rules placed in the flow tables of OpenFlow
switches to direct traffic forwarding.

A rule can be stored either as an exact-match rule [1] [2]
or a wildcard rule [4] [11] in the switch. Compared with
exact-match rules, wildcard rules improve the reusability of
rules in the flow table and reduce the number of flow setup
requests to the controller, enhancing the scalability of the
system. However, wildcard rules are typically supported by
Ternary Content Addressable Memory (TCAM), which is
highly limited in capacity. The flow table in a commod-
ity switch is reported to support only a few thousand wild-
card rules [2]. To improve scalability, recent study suggests
either proactively allocating rules on multiple switches to
load balance the flow table consumption [6] or reactively
caching rules [2] [11] on each switch. Compared with proac-
tive schemes, the reactive approach dynamically caches ac-
tive rules in switches on demand, which saves flow table
space and enables rapid reaction to traffic dynamics.

Reactively caching wildcard rules in switches creates sev-
eral challenges. First, the cache miss rate needs to be con-
trolled to improve network performance. Packets suffering
from a cache miss will experience a 2-ms latency compared
to a 5-ns latency with a cache hit [2]. A high cache miss
rate also leads to frequent invocations to the controller, and
consumes the limited control network bandwidth. Second,
dependency between rules complicates the caching process.
Since rules overlap in field space with different priorities,
simply caching the requested rule can generate false packet
forwarding [11]. To guarantee the semantic correctness of
rules cached in switches, extra storage overhead is required,
which increases the chance of flow table overflow.

To address the problem, we propose a novel reactive wild-
card rule caching system named CAching in Buckets (CAB).
The main idea of CAB is to divide the geometric representa-
tion of the rule set or the field space into many small logical
structures called buckets, and to associate each rule with
one or multiple buckets according to its location in the field
space. To ensure semantic correctness, rules associated with
the same bucket are always cached together.

The main contributions of our work are summarized as
follows:

1. We propose a design architecture of CAB that im-
proves the efficiency of flow table usage and provides
the semantic correctness guarantee when dependency
among wildcard rules exists. We design a two-stage
flow table pipeline for switches that support CAB, and
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Figure 1: Traffic locality

is fully compatible with the OpenFlow switch specifi-
cation 1.4 [7].

2. We analyze the bucket generation problem, and de-
velop a heuristic bucket generation algorithm to im-
prove system performance.

3. To evaluate the performance of CAB, we compare CAB
with different rule caching schemes through simula-
tions. The results show that CAB prevails in reducing
flow setup requests, controlling bandwidth consump-
tion, and introducing the lowest flow setup latency.
We also discuss the parameter tuning of CAB, which
shows promise for a line of research.

The rest of the paper is organized as follows. In Section 2,
we introduce in detail the motivation and challenges of this
work. Section 3 presents the caching mechanism of CAB
and the switch implementation, followed by discussions on
bucket generation in Section 4. Section 5 shows the perfor-
mance evaluation. We conclude the paper and discuss some
future work in Section 6.

2. MOTIVATION AND CHALLENGES

2.1 Traffic Locality
A key observation that motivates caching wildcard rules

instead of exact-match rules is the traffic locality in a variety
of network scenarios. Here we define the term traffic locality
as, during a short period of time, traffic is localized in close
proximity to the field space. We analyzed the traffic traces
from a working enterprise data center from New York City
Department of Education (NYCDoE-DC). The host pairs
of the traces on a core-to-aggregate link of a switch with
a duration of 5 minutes are plotted in Figure 1. We can
see that most traffic is localized in several blocks. Similar
evidence of traffic locality has been observed by previous
studies in data centers [5] and ISP networks [3].

Suppose we cache exact-match rules. Almost every flow
passing the switch will trigger a rule installation request to
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Figure 2: Rule dependency problem (the solid rectangles
represent the rules that are cached in the switch, while the
hollow ones represent those not cached)

the controller. In scenarios such as NYCDoE-DC, the num-
ber of new requests generated amounts to 2000 per port per
second. Previous work [10] reports that there can be up to
200k flow setup requests for a 4000-server cluster. Caching
exact-match rules easily overwhelms the controllers’ ability
to processing requests and exhausts the limited control net-
work bandwidth.

By contrast, caching wildcard rules can exploit the traffic
locality to reduce cache misses. The flows in the ‘hot’ blocks
in traces may share the same wildcard rules or neighboring
ones. Each rule can be re-used frequently within short pe-
riods of time. As flows referring to the same wildcard rule
aggregately generate one single request to the controller, the
controller load and control bandwidth consumption are ef-
fectively reduced.

2.2 Rule Dependency Problem
Wildcard rules are assigned different priorities to avoid

conflicts as they may overlap in the field space. However,
this generates a dependency problem for rule caching. To
guarantee semantic correctness of packet matching, extra
memory cost has to be introduced to the flow table, which
increases the chance of flow table overflow. We use the ex-
ample in Figure 2 to demonstrate this problem. Consider
a rule set with six rules over a two dimensional field space.
Assume initially the flow table for a certain switch is empty.
When the first flow f1 arrives, the switch needs to invoke
the controller to install the corresponding Rule 4 (Figure
2b). However, simply installing Rule 4 would cause poten-
tial wrong matching decisions at the switch in the future.
Suppose later another flow f2 arrives at the switch and hits
the space where Rule 3 and 4 overlaps. It will locally match
with Rule 4 instead of the expected Rule 3, since the latter is
not cached in the switch. This indicates that when caching
Rule 4, the switch should also cache Rule 3 to guarantee
correct matching in the future (Figure 2c). For the same
reason, Rules 1 and 2 also need to be cached along with
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Figure 3: Caching rules in bucket

Rule 3, or flows f3 and f4 will get wrong matching in the
switch (Figure 2d). Therefore, Rules 1, 2 and 3 need to be
installed whenever Rule 4 is cached, regardless of the future
flow arrivals. The problem lies in that Rule 3 has higher
priority and overlaps with Rule 4, which is a directly depen-
dent rule of Rule 4. While Rules 1 and 2 are dependent with
Rule 3, they are indirectly dependent with Rule 4.

Due to rule dependency, in the naive way, all the depen-
dent rules, directly and indirectly, need to be cached along
with the requested rule. Using rule sets generated by Class-
bench [9], we found that the average number of dependent
rules reaches up to 350 for each rule for a set with 8k rules.
In the worst case, the default rule is dependent on all the
rules, which amounts to the size of the whole set. Therefore,
caching all dependent rules of a matched rule can easily over-
flow the switch flow table and is considered infeasible.

Another approach to resolve the dependency is to convert
rules to new micro rules without overlapping [3] [11]. How-
ever, since each rule has tens of overlapped rules on aver-
age, slicing them into non-overlapping micro rules generates
quite a lot of entries. This tends to increase the number of
entries cached in the flow table, which increases the chance
of overwhelming the TCAM memory in the switch and adds
complexity for the controller to store and update the rules.
In designing CAB, we resolve the rule dependency problem
without modifying the original rule set.

3. CAB DESIGN

3.1 Caching Rules in Buckets
The core idea of CAB is to use a filtering structure named

bucket to guarantee correct packet matching and control the
number of rules necessary to be cached in the switch. In
CAB, the field space of packet headers is partitioned into
small hyper-rectangles or buckets as shown in Figure 3a.
Each bucket can be represented by a wildcard rule that can
be stored in the TCAM. We define the associated rules of
a certain bucket as the rules overlap with the bucket in the
field space. Whenever a flow setup request comes, the con-
troller finds the requested bucket and caches it along with
all the associated rules onto the switch. For instance, in the
example of Figure 3b, Buckets C and F are cached with
Rules 2, 3 and 4. Note that within each bucket, the rules
have the same semantic views as in the controller, while a
packet failed to hit a bucket will trigger an installation to
satisfy the request (Figure 3a). Therefore, the switch can
always guarantee correct forwarding of packets and resolves
the rule dependency problem.

OpenFlow Switch
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Figure 4: CAB implementation

In terms of memory cost, the bucket design brings several
other benefits. First, through buckets we can control the
rules installed for each request. As shown in Figure 3b,
for f1 only Rules 3 and 4 along with Bucket F need to be
cached, instead of having all the dependent rules of Rule 4
(i.e., Rules 1, 2 and 3) cached at one time. Second, we can
benefit from traffic locality by caching neighboring rules in
buckets. For instance, as f1 and f2 approach in proximity.
f1 generates only one request to install Bucket F . Later,
f2 can be forwarded at the line rate without generating a
request to the controller or experiencing a setup latency.
Third, all rules are still cached in their original form without
being split. This avoids generating too many micro rules,
which would otherwise consume a lot of flow table memory.

3.2 Switch Implementation
To support the idea of CAB, the switch is implemented

by a two-stage table pipeline [7] consisting of a bucket filter
and a flow table (Figure 4). All the buckets cached in the
bucket filter have the same priority with the same action that
directs the matching packet to the next stage flow table. The
rules are cached in the flow table according to their original
priority. A packet that failed to find a matching bucket
in the bucket filter will have its header encapsulated and
forwarded to the controller. When receiving a request, the
controller will perform a bucket search and install the bucket
and all its associated rules on the switch.

In CAB, the bucket is the atomic unit in the installation
and destruction of cached entries. Note that multiple buck-
ets can share the same rules. When deleting a rule, we must
ensure that all the buckets that are associated with the rule
have been deleted. We guarantee this consistency by as-
signing the same timeout value To to the bucket and all its
associated rules. If a rule is found to have been cached ear-
lier along with another bucket, the timeout value is refreshed
according to the most recent installation.

A concrete example: We consider the flow arrivals as
Figure 3b shows. Assume initially both the bucket filter
and the flow table are empty. At t1, a flow f1 arrives at
the switch, resulting in a flow setup request sent to the con-
troller. The controller installs Bucket F in the bucket filter
and its associated Rules 3 and 4 in the flow table. The time-
out is set as t1 + To. At t2, flow f2 arrives and passes the
bucket filter as it matches with Bucket F . Then it is for-
warded to the flow table and matches with Rule 3. Later at
t3, another flow f3 arrives at the switch. Since f3 doesn’t
match with any buckets in the bucket filter, it triggers the
installation of Bucket C and Rule 2 with the timeout set as
t3 + To. As Rule 3 is already in the switch, the timeout is
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refreshed to t3 + To. Figure 4 depicts the table status after
t3.

The switch implementation of CAB is fully compatible
with the flow table pipeline specified in the OpenFlow switch
specification 1.4 [7]. While the bucket filter and the flow
table are two tables logically, they can be implemented by
two separate TCAM chips or one TCAM chip with multiple
lookups.

4. BUCKET GENERATION

4.1 Bucket Generation Problem
The generation of buckets is handled by a software based

controller. Bucket generation deals with the following prob-
lem: given a policy rule set R, partition the d-dimensional
field space F into a bucket set B. An optimal set of buck-
ets generated shall get the lowest cache miss rate when the
OpenFlow switch caches rules with the buckets generated to
process the arriving packets.

We observe that the size of buckets directly affects the
cache performance. In our discussion, the size of a bucket is
defined as the number of rules associated with it. A larger
bucket can potentially reduce the flow setup requests, since
more flows arriving at the switch tend to share the same
bucket and aggregately generate fewer requests. However, it
can also lead to wasted space in the flow table (some rules
are installed but not matched by any flows) and increase
the chance of flow table overflow. Furthermore, a larger
bucket will trigger installation of more rules each time it
is requested, which consumes more control bandwidth. On
the other hand, a small bucket may reduce the unused rules
cached in switches, but the switch tends to cache more buck-
ets in the bucket filter, which also consumes space in TCAM.
In CAB, we bound the size of each bucket with a fixed value
N . The optimal choice of N depends on both the distribu-
tion of rules and traffic pattern. In reality, we tune the value
using historical traces. The effect of different N is discussed
in detail in Section 5.

4.2 Bucket Generation Algorithm
The bucket generation algorithm design shares similarity

with earlier packet classification work such as HiCuts and
HyperCuts [8], all generating decision trees for field space
partitioning. In bucket generation, we specifically taking
into account that buckets needs to be represented by wild-
card rules so as to be stored in TCAM. This requires us to
conduct binary or multi-binary cuts on each dimension.

As shown in Figure 5 , We start from the root node of
the tree which represents the d−dimensional field space F

Algorithm 1 Bucket Generation Algorithm

Input: Rule set R, Node S, Size bound N
Output: Decision tree T , Bucket Set B
1: function Partition(R, S,N)
2: for each ci made from d dimensions do
3: Partition on dimensions of ci, and calculate the

cost Costci(S)

4: end for
5: Find ci where the Costci(S) is minimized, and ap-

pend Sci
0 ...S

ci
2m−1 to T

6: for each child hyper-rectangle Sci
k do

7: if A(Sci
k ) ≤ N then

8: Append Sci
k to B

9: return
10: else Partition(R, Sci

k , N)
11: end if
12: end for
13: end function

associated with the whole rule set R. Then we recursively
partition the node from the tree into child node with smaller
size (defined as the number of associated rules of the node).
Each node therefore represents a hyper-rectangle in the field
space. The partitioning terminates till the size of the node
non-greater than the predetermined N , and the leaf node is
marked as a bucket. Each time we select m out of d dimen-
sions to partition a node. Suppose we denote a candidate
m-combination to partition a node S as ci (i indexed from
0 to

(
d
m

)
− 1), we’ll generate 2m child node denoted Sci

k .
For instance, in Figure 5 we partition m = 1 dimension each
time on a d = 2 dimensional field, and each time we generate
21 child nodes.

To determine the ci to partition on, we consider both the
sum and the deviation of the sizes of nodes generated by
a trial cut on ci. We choose the ci that minimize a cost
function defined as follows,

Costci (S) =

2m−1∑
k=0

A(S
ci
k ) + δ

2m−1∑
k=0

(A(S
ci
k )−

2m−1∑
k=0

A(S
ci
k )/2m)

where A(Sci
k ) stands for the number of associated rules or

the size of hyper-rectangle Sci
k , and δ is a positive value to

adjust the weight between the sum and the deviation. Note
that by minimizing the sum of the node, we can reduce the
redundancy of having the same rules associate with different
buckets. By balancing the size of the nodes generated, we
can avoid having some nodes having a relatively large size,
which increase the depth of the tree.

In our implementation, each time we cut m = 2 dimen-
sions over the 5-tuple field space, which is a good tradeoff
between the decision tree search time and storage overhead.
Suppose we choose to partition on one dimension each time
as in Figure 5, the tree will become very deep and prolong
the decision tree search time. By contrast, if we set a larger
m, say m = 5, each partition will generate 25 = 32 children,
leading to a large memory overhead with many duplicated
rules in buckets. δ is tuned to minimize the number of buck-
ets.
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Figure 6: Synthetic traces generated

5. PERFORMANCE EVALUATION

5.1 Simulation Setup
Rules and traces generation: As we cannot obtain a

real rule set with enough scale for the simulation, a syn-
thetic rule set with 4k rules is generated using ClassBench
[9] for the tests. Although we do have real traces from
NYCDoE-DC, directly using it with synthetic rules is infea-
sible. Most traffic hits the default rules due to inconsistency
between traces and rules. To bridge the gap, we develop
a header mapping technique that maps the real traces on
to synthetic rules1. As we do this, the statistics of flows
(packet size, inter-arrival rate, and flow duration) are pre-
served. Trace pruning and interpolation are designed for
tuning traffic load. A snapshot of the synthetic trace gener-
ated is shown in Figure 6 with a duration of 5 minutes. We
can see a close resemblance of the layout of synthetic traces
to the real ones in Figure 1.

Device parameters: In the tests we simulate a single
OpenFlow switch with direct connection to the controller.
The TCAM capacity is set to support 1500 entries, each
costing 288 bits memory. For simplicity, the RTT for the
flow setup upon a cache miss is set fixed to be 2ms while the
forwarding delay at a line rate is 5ns [2]. Queuing delays of
rule installation are not covered in our simulation.

Schemes for testing: We evaluate the following three
rule caching schemes along with CAB to compare perfor-
mance. All the schemes guarantee the semantic correctness
of packet matching.

1. Caching exact-match rules (CEM) is proposed in Ethane
[1] and DevoFlow [2] to control all or partial flows in
the network. CEM suggests caching the exact-match
rules of a flow when corresponding entry is absent in
the flow table. In the simulation we consider exact-
match rules to be supported by SRAMs with 200k-
entry capacity.

2. Caching micro-rules (CMR) is proposed by Q. Dong et
al. [3] and applied in DIFANE [11]. CMR partitions
the rule set into new micro-rules without overlapping
and caches them in the switches.

1source codes available at https://github.com/bovenyan
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Table 1: Average flow setup time

CAB CMR CDR CEM
37.9 us 66.0 us 553.4us 1965.3 us

3. Caching dependent rules (CDR) works as a naive bench-
mark. When a flow request is received, CDR installs
the requested rule and all its dependent rules to the
flow table.

5.2 Simulation Results
Resource Consumption: We measured the cache miss

rate and the control bandwidth consumption of four different
rule caching schemes with varying flow arrival rates. We
tested on traces with a duration of 20 minutes. The results
are shown in Figure 7. Since rarely do flows share exactly
the same 5-tuple address, each flow arrival contributes to a
cache miss in CEM. CDR requires all the dependent rules
to be installed; therefore, it quickly overflows the memory.
CMR benefits from caching micro range rules and performs
better than the prior two. However, as too many micro rules
are generated and cached, it also overwhelms the memory
shortly after. By contrast, CAB generates more than one
tenth cache misses of CMR, and the bandwidth consumption
is more than a half less. Although eventually it overflows
the table (not shown in the graph), it can stably support an
arrival rate of 15000 flows/sec.

Flow setup time: Table 1 lists the average flow setup
times given the arrival rate of 1000 flows/sec. We don’t
present results under higher arrival rate because CDR and
CMR experience flow table overflow, rendering unpredictably
long setup times due to request queuing and control band-
width congestion. As expected, CAB achieves the lowest
flow setup latency. CMR also enjoys nice performance since
micro rules are frequently reused by localized traffic. CDR
is inferior to the prior two as caching all dependent rules
increases cache misses. For CEM, since almost each flow
needs to be forwarded to the controller, the average setup
time is close to the RTT of a flow setup. Considering the
results denote the average delay on each flow per switch, the
difference on even the micro second scale means a lot.

Effects of tuning bucket size: Figure 8 presents the
effect of tuning the bound of bucket size N on cache miss
and rules installed per second. We test on traces with an
arrival rate of 7000 flows/sec. For a smaller bucket size,



 0

 50

 100

 150

 200

 250

 300

 6  8  10  12  14  16  18
 0

 200

 400

 600

 800

 1000

C
a
ch

e
 m

is
s 

/ 
se

c

R
u
le

s 
in

st
a
lle

d
 /

 s
e
c

Bucket Size (N)

Cache miss
Rules installation

Figure 8: Effect of tuning bucket size

cache miss is high because we install more buckets. In-
creasing the bucket size reduces the cache miss within a
range, as each bucket is reused by more flows. Meanwhile,
the number of rules installed per second increases because
a larger bucket has more associated rules. More flow ta-
ble space is consumed to store the rules. Beyond a certain
bound(N > 16), the table is overflowed and cache misses
increase significantly. A proper selection of N ranges from 9
to 16. The tuning of bucket size shows the potential of dy-
namic bucket generation, where the size of bucket changes
over time to accommodate the time-varying traffic.

6. CONCLUSION AND FUTURE WORK
In this paper, we present CAB, a novel reactive wildcard

rule caching system. CAB resolves rule dependency while
achieving efficient use of control network bandwidth, and
reducing controller processing load and flow setup latency.
We plan to further look into more dynamic scenarios where
the traffic pattern changes more frequently and buckets are
generated and tuned dynamically. A prototype evaluation
of the system is on schedule to further investigate implemen-
tation issues.
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