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Abstract

The ever-increasing operational cost of geographically distributed datacenters has become a critical issue for cloud service
providers. In order to cut the electricity cost of geographically distributed datacenters, several workload management
schemes have been proposed, such as Electricity price-aware InteR-datacenter load balancing (EIR), which reduces the
electricity cost of active servers by dispatching workload to datacenters with lower electricity prices, and Cooling-aware
IntrA-datacenter load balancing (CIA), which decreases the power consumption of a datacenter by consolidating workload
on servers with high cooling efficiency. However, these existing schemes could incur some undesired results. For example,
EIR may result in high electricity cost of cooling systems due to random workload distribution in datacenters. CIA could
lead to high electricity cost of active servers since it does not consider the variation of electricity prices. In this paper,
we propose a joint inter- and intra-datacenter workload management scheme, Joint ElectriciTy price-aware and cooling
efficiency-aware load balancing (JET), to cut the electricity cost of geographically distributed datacenters. JET uses a
short processing time to calculate the optimal workload distribution, which trades off the electricity cost of active servers
and cooling systems by alternately selecting the electricity prices or the efficiency of a cooling system as the dominator
factor to the electricity cost of geographically distributed datacenters. Extensive evaluations show that JET outperforms
the existing schemes and achieves substantial reduction on the electricity cost of geographically distributed datacenters.

Keywords: Geographically distributed datacenters; Dynamic workload management; Electricity cost; Electricity price;
Efficiency of a cooling system

1. Introduction

As the demand of resilient and low-latency cloud ser-
vices increase in recent years, cloud services providers,
such as Amazon, Google, and Microsoft, have been rapidly
deploying and expanding their geographically distributed
datacenters. A recent report shows that the electricity de-
mand of worldwide datacenters increased by about 56%
from year 2005 to 2010, and the electricity usage of dat-
acenters accounted for 1.1%∼1.5% of the worldwide elec-
tricity usage in 2010 [1]. Generally, a datacenter spends
30%∼50% of its operational expense toward electricity [2].
Therefore, cutting down on the electricity cost of geo-
graphically distributed datacenters has become a major
effort of cloud service providers.

Many studies have been conducted to seek optimal dat-
acenter workload management schemes on the purpose of
reducing the electricity cost of geographically distributed
datacenters. Some studies focused on the intra-datacenter
workload management, which decreases the power con-
sumption of active servers in a datacenter by dynamic
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server demand management mechanisms [3][4]. Since the
power consumption of a cooling system can take up to 50%
of the total power consumption of a datacenter [5], other
studies considered the impact of workload distribution in a
datacenter on the power consumption of a cooling system
and proposed the intra-datacenter workload management
to reduce the power consumption of a cooling system [6][7].
Due to the location and time diversities of electricity prices
in the United States, the inter-datacenter workload man-
agement was proposed to minimize the electricity cost1

of active servers of geographically distributed datacenters
by periodically distributing workload to datacenters with
lower electricity prices [8][9].

In recent publications, server facilities and cooling sys-
tems are jointly considered to lower the electricity cost of
geographically distributed datacenters [10][11]. However,
these works only consider a cooling system as a device
consuming constant power and neglect variant efficiency
of a cooling system resulting from diverse workload dis-
tribution in a datacenter. [12] exploited the impact of
workload distribution in a datacenter on the efficiency of

1The electricity cost of a datacenter equals the power consump-
tion of the datacenter multiplied by the electricity price of the dat-
acenter location.
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a cooling system and proposed that a datacenter can be
divided into three nearly temperature isolated zones (i.e.,
cool, warm, and hot zone) based on air flow patterns in the
datacenter. The power consumption for cooling the same
number of servers in the hot zone is larger than that in
the other two zones. Therefore, the workload distribution
in different zones of a datacenter significantly affects the
power consumption of a cooling system, and it should be
taken into consideration as an important factor by cloud
service operators to reduce the electricity cost of cooling
systems of geographically distributed datacenters.

In this paper, we propose a joint inter- and intra-
datacenter workload management scheme, Joint Electric-
iTy price-aware and cooling efficiency-aware load balanc-
ing (JET), to minimize the total electricity cost of geo-
graphically distributed datacenters. We first model the
electricity cost of active servers as a function of electricity
prices and the number of active servers. We also model
the electricity cost of a cooling system as a function of
Computer Room Air Conditioner (CRAC) output temper-
ature. Based on these models, we propose a electricity cost
minimization model of geographically distributed datacen-
ters that effectively integrates both electricity price and
cooling system management, and formulate the Electricity
Cost Minimization (ECM) problem of geographically dis-
tributed datacenters as a constrained nonlinear optimiza-
tion problem, subject to constraints of Quality of Service
(QoS). We then simplify the complicated ECM problem to
the Transformed ECM (TECM) problem (a convex opti-
mization problem with linear constraints) by reasonable
transformations and assumptions and solve the TECM
problem with the proposed JET. Extensive evaluations
based on the real-life workload trace and electricity prices
of multiple datacenter locations show that JET calculates
the optimal workload distribution with a short processing
time and substantially reduces the electricity cost of geo-
graphically distributed datacenters, as compared with the
existing schemes. To the best of our knowledge, our work
presents the first study on cutting the electricity cost of
geographically distributed datacenters with a joint inter-
and intra-datacenter workload management scheme.

The major contributions of this paper are summarized
as follows:

1. We build a model for the efficiency of a cooling sys-
tem in a datacenter with respect to CRAC output
temperature and apply this model to the geograph-
ically distributed datacenters. Using this model, we
further propose the ECM problem through explic-
itly enforcing the impact of workload distribution in
a datacenter on the efficiency of a cooling system in
existing works.

2. We make reasonable transformations and assump-
tions on variables and constraints to transform the
ECM problem (a complicated constrained nonlinear
optimization problem) to the TECM problem (a con-
vex optimization problem with linear constraints).

We solve the TECM problem with the proposed JET,
which dynamically dispatches incoming service re-
quests2 to active servers in three temperature iso-
lated zones of geographically distributed datacenters
by jointly considering time-varying locational elec-
tricity prices and the impact of workload distribution
in a datacenter on the efficiency of a cooling system.

3. We evaluate the performance of JET against the
existing schemes based on real-life traces. Exten-
sive evaluations show that JET performs much bet-
ter than the existing schemes and achieves substan-
tial reduction on the electricity cost of geographi-
cally distributed datacenters. Compared with ser-
vice deadlines in real-life applications, the process-
ing time of JET is really short, and it changes very
slightly as the amount of workload changes.

The rest of the paper is organized as follows. Sec-
tion 2 discusses the motivation of this paper. Section 3
presents system framework. Section 4 describes electricity
cost models and QoS constraints used for problem formu-
lation. Section 5 formally proposes the ECM problem and
solves the problem by the proposed JET. Section 6 dis-
cusses the evaluation strategy and compares JET with the
existing schemes using real-life traces. Section 7 reviews
the related work and Section 8 concludes the paper.

2. Motivation

2.1. Variation of electricity prices

Electricity is produced by government utilities and in-
dependent power producers from different sources, such as
coal, natural gas, and renewable energy. Providers and
consumers of electricity power are usually connected to an
electricity grid, which is a complex electricity transmis-
sion and distribution network. Consider the United States
as an example, its electricity grid is divided into eight re-
gional grids, each of which is operated and managed by
a Regional Transmission Organization (RTO). Each RTO
is responsible for setting up and directing electricity flows
over the grid, and ensures the short-term reliability of the
grid. There are two main parallel electricity markets in the
United States: the retail market and the wholesale mar-
ket. In the retail electricity market, electricity prices are
fixed for a certain period of time, while electricity prices
may vary on a 5-min or 1-hour basis in the wholesale elec-
tricity market. Empirical market analysis from public data
archives shows that electricity prices in the wholesale mar-
ket exhibit a significant amount of day-to-day and hour-to-
hour geographically uncorrelated volatility [8]. The elec-
tricity prices of locations in different regional markets are
never highly correlated, even nearby locations in the same
region are not always well correlated [8].

2We use service requests and workload interchangeably in this
paper.
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Figure 1: Water-chilled datacenter cooling system [12].

2.2. Dynamic service request routing mechanism

Currently, most cloud service providers have built their
datacenters among different regions because of various con-
siderations, such as system reliability, service delay, and
electricity cost. To guarantee customer QoS and fault re-
silience, many cloud service providers have implemented
dynamic service request routing mechanism in geograph-
ically distributed datacenters [8]. This mechanism en-
ables datacenters to periodically communicate with each
other about their system information, which is used to
process service requests at geographically distributed sites
[8]. Since the electricity cost of geographically distributed
datacenters equals the power consumption multiplied by
electricity prices, it is possible to reduce the electricity
cost by monitoring the fluctuations of electricity prices for
distributed datacenter locations and optimally dispatching
more workload to those datacenters with low electricity
prices, subject to QoS requirements.

2.3. Efficiency of cooling system

As the increase of server density and service amount,
the power consumption of a cooling system has been a
significant portion of the total power consumption of a
datacenter. Typically, a cooling system is used to prevent
the temperature of datacenter room exceeding the maxi-
mum safety temperature because the performance of a dat-
acenter (e.g., hardware reliability [13]) is affected by the
temperature of the datacenter room. Figure 1 describes
the typical water-chilled datacenter cooling system using
CRAC units [6]. Normally, CRAC units take in hot air
produced by active servers and deliver cool air into a dat-
acenter room through floor vent tiles. Thus, in the data-
center, hot air rises from bottom to top of the racks and
air flows poorly at the ends of aisles [7][12]. Due to the
circulation of air flow in the datacenter room, the top-shelf
servers in each rack are hotter than the lower ones, the side
racks of each row are hotter than the inside ones, and the
servers at the ends of rows are the hottest ones. Therefore,
one datacenter can be divided into three nearly tempera-
ture isolated zones (i.e., cool, warm, and hot zone) based
on air flow patterns in the datacenter [12]. Figure 2 de-
picts zone temperature curves associated with their zone
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Figure 2: Temperature curves of warm and cool zone [12].
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Figure 3: Power consumption of a cooling system in the three nearly
temperature isolated zones of a datacenter when the maximum safety
temperature of each zone is set at 30◦C.

load percentages. In Figure 2, zones 1, 2, and 3 denote
the cool, warm, and hot zone, respectively. The tempera-
ture of zone j (j = 1, 2, 3) in datacenter i (1 ≤ i ≤ N) is
denoted as Ti,j(m

p
i,j), which is a linear piece-wise curve as-

sociated with zone j’s load percentage mp
i,j [12]. In this fig-

ure, when the cool zone is uniformly distributed with 30%
of its load, its temperature reaches 20◦C. However, the
temperature of the warm zone reaches 20◦C if the warm
zone is uniformly distributed with 7% of its load. A spe-
cific case is shown in Figure 3, which describes the power
consumption of a cooling system in the three zones of a
datacenter when the maximum safety temperature is set
at 30◦C [12]. Clearly, cooling the same number of active
servers in the hot zone consumes more cooling power than
that of the other two zones, especially when the number
of active servers is over seven.

The power consumption of a cooling system is given
by:

the power consumption of active servers

Coefficient of Performance (COP )
(1)

COP is an efficiency metric for quantifying CRAC unit
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Figure 4: COP curve of CRAC [6].

and is an increasing function associated with CRAC out-
put temperature. Figure 4 shows COP curve of CRAC
unit, which is measured from HP labs Utility Datacen-
ter [6]. As we will detailed in Section 4.2, CRAC output
temperature depends on the maximum temperature of the
three zones [12]. For a given workload, the temperature
difference of the three zones can be minimized by ratio-
nally dispatching workload to servers of the three zones.
Consequently, CRAC units would work in an efficient op-
erating range, and the power consumption of the cooling
system could be reduced.

However, inappropriate usage of CRAC could increase
the power consumption of the cooling system. For ex-
ample, there is an intuitive processing of cooling system,
which works under two conditions: (1) CRAC units are
closed or turned into sleeping mode when the temperature
of datacenter room is below the maximum safety temper-
ature; (2) CRAC units are activated only when the tem-
perature of datacenter room exceeds the maximum safety
temperature. Under Condition (1), some cooling power
can be saved since the heat from active servers is not re-
moved. However, the COP of CRAC under Condition (2)
is much lower than the COP of CRAC under Condition
(1), because the COP curve is a nonlinear curve asso-
ciated with CRAC output temperature and the slope of
COP curve decreases as the CRAC output temperature
decreases, which are shown in Figure 4. Based on Eq.(1),
the cumulated heat from past would consume more cooling
power under Condition (2) than it does under Condition
(1). As a result, the power consumption of a cooling sys-
tem would be increased. The detail of how to minimize
temperature difference of the three zones are detailed in
Section 4.2.

2.4. The impact of workload management on the electric-
ity cost of geographically distributed datacenters

Workload management [3][4][6][7][8][9][10][11][12] is a
load-balancing application for the datacenter, the goal of
which is to enable active servers to have approximately

equal processing loads by dispatching incoming service re-
quests based on current datacenter status. The workload
management scheme plays a critical role on the electric-
ity cost of geographically distributed datacenters since it
determines the number and placement of active servers
in datacenters and significantly influences the efficiency of
other devices (e.g., cooling system) in each datacenter.

Existing works mainly focus on two aspects: the intra-
datacenter workload management and the inter-datacenter
workload management. Cooling-aware IntrA-datacenter
load balancing (CIA) [6][7] is a representative intra-datacenter
workload management scheme. CIA monitors the ther-
mal status of one datacenter and consolidates incoming
workload on a subset of servers with high cooling effi-
ciency to reduce the power consumption of this datacen-
ter. Electricity price-aware InteR-datacenter load balanc-
ing (EIR) [8][9] is a typical inter-datacenter workload man-
agement scheme, which minimizes the electricity cost of
active servers in geographically distributed datacenters by
periodically distributing workload to different datacenters
based on the temporal and spatial variant electricity prices
of those datacenter sites.

2.5. Problems of existing schemes

As stated in Section 2.4, each of the existing schemes
only considers one factor that impacts the electricity cost
of geographically distributed datacenters and overlooks the
interaction between the two factors. Thus, some unde-
sirable results could occur. For instance, EIR may in-
cur high electricity cost of cooling systems due to ran-
dom workload distribution in geographically distributed
datacenters. CIA could lead to high electricity cost of ac-
tive servers without considering the variation of electricity
prices among datacenter sites. A simple combination of
the two aforementioned schemes cannot achieve the global
minimization of the electricity cost of geographically dis-
tributed datacenters, as we detail in Section 6.2.

The work presented in this paper differs from the exist-
ing works in the way that the proposed workload manage-
ment scheme JET jointly considers the variation of elec-
tricity prices on the electricity cost of active servers and
the impact of workload distribution in a datacenter on the
electricity cost of a cooling system. For a certain amount
of incoming workload, JET alternatively selects either the
variation of electricity prices or the workload distribution
on the efficiency of cooling systems as the dominator factor
for the electricity cost, and directly determines the number
and placement of active servers in the three zones of each
datacenter to minimize the electricity cost of active servers
and cooling systems in the geographically distributed dat-
acenters.

3. System architecture

In this section, we provide a high-level description of
our system architecture. In this paper, we assume our sys-
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Figure 5: System architecture.

tem is a centralized system that manages a datacenter net-
work for minimizing the electricity cost. While such a cen-
tralized architecture is commonly used in the management
of geographically distributed datacenters [8][9], our sys-
tem can be extended to work in a hierarchical/distributed
way, which is our future work. Figure 5 shows our sys-
tem architecture, which includes three components: (1)
accumulating, (2) JET processing, and (3) scheduling. In
the accumulating component, service requests are accumu-
lated and stored by request aggregators in a fixed period
of accumulation time Tacm (e.g., 100 ms). For a central-
ized system, there could be multiple distributed request
aggregators working together as a logically centralized re-
quest aggregator. In the JET processing component, JET
is used to calculate the optimal workload dispatching (the
number of active servers in zone j of datacenter i, mi,j)
for the stored service requests with respect to QoS con-
straints and the current datacenters status (e.g., electric-
ity prices Pri(t), the service rate of servers µi, datacen-
ter i’s maximum number of servers Mi), so that the total
electricity cost of geographically distributed datacenters is
minimized. In the scheduling component, dynamic request
routing mechanism is used to redirect service requests to
geographically distributed datacenters based on the deter-
mined request dispatching results in the JET processing
component.

4. Electricity cost models and QoS constraints of
geographically distributed datacenters

In this section, we present the modeling for electricity
cost of active servers and cooling systems of geographi-
cally distributed datacenters in detail. We also provide
the modeling of different components for QoS constraints
of geographically distributed datacenters.

4.1. Notations

The notations used in this paper are summarized in
Table I.

Table 1: Notations

N Total number of datacenter locations

i Datacenter location i (1 ≤ i ≤ N)

j Temperature isolated zone j (j =1,2,3)

Pri(t) Electricity price of datacenter i at t (t > 0)

Poi
Power consumption of one server at datacen-
ter i

Pidle
Average idle power draw of one server at dat-
acenter i

Ppeak
Average peak power consumption of one
server at datacenter i

ui CPU utilization of servers at datacenter i

µi Service rate of one server at datacenter i

λ
Total service request rate for the geographi-
cally distributed datacenter

λi Service request rate of datacenter i

di Average delay of datacenter i

Dsi Delay constraint of datacenter i

mi The number of active servers in datacenter i

mi,j
The number of active servers in zone j of
datacenter i

mp
i,j Load percentage of zone j in datacenter i

Mi
The maximum number of servers in datacen-
ter i

Mi,j
The maximum number of servers in zone j
of datacenter i

Ti,j(m
p
i,j)

Temperature of zone j in datacenter i with
mp

i,j

TMAX Maximum safety temperature of each data-
center

T out Temperature of cool air from CRAC unit

T server
i Temperature of servers in datacenter i

Tnew
i

Adjusted new output temperature of CRAC
unit in datacenter i

COPi COP of datacenter i

K
The number of piece-wise functions for ap-
proximating 1/COP

gk(mi)
k-th piece-wise function for approximating
1/COP (1 ≤ k ≤ K)

4.2. Electricity cost model of active servers of geographi-
cally distributed datacenters

Suppose one cloud service provider operates N dis-
tributed datacenters. Datacenter i (1 ≤ i ≤ N) is at
location i with the hourly electricity price Pri(t) at time
t (t > 0). Assume that each datacenter uses homoge-
neous servers and configurations. The power consumption
of each server in datacenter i is Poi [8]:

Poi = Pidle + (Ppeak − Pidle)ui (2)

where Pidle, Ppeak, and ui denote the average idle power
draw of a single server, the average peak power, and the

5



CPU utilization of servers in datacenter i, respectively.
As discussed in Section 2.3, one datacenter can be di-

vided into three temperature isolated zones due to the
physical structure of datacenter and air flow patterns [12].
Thus, for a given load in datacenter i, the number of ac-
tive servers mi can be divided into three parts, mi,1 for
the cool zone, mi,2 for the warm zone and mi,3 for the hot
zone. Thus, we have:

mi =

3∑
j=1

mi,j (3)

Therefore, the Electricity Cost of Active Servers (ECAS)
of N distributed datacenters is given as:

ECAS =

N∑
i=1

 3∑
j=1

mi,j

 [Pidle + (Ppeak − Pidle)ui]Pri(t)

(4)

4.3. Electricity cost model of cooling systems of geograph-
ically distributed datacenters

In a datacenter, the cooling system is used to maintain
the temperature of datacenter room at a reasonable level
by delivering cool air into the datacenter room and taking
in hot air produced by active servers. As explained in Sec-
tion 2.3, COP is the metric for quantifying the efficiency
of CRAC units in the datacenter. A higher COP indicates
a higher efficiency of the cooling system. As presented in
[14], if CRAC units take in hot air at 20◦C and push cool
air at 15◦C, CRAC units expend 5.26 kW to remove the
10 kW of heat for cooling a specific volume of air. How-
ever, when CRAC units take in hot air at 25◦C and push
cool air at 20◦C, CRAC units only expend 3.23 kW to
remove the same 10 kW of heat for cooling the same vol-
ume of air, which saves about 40% cooling power. There-
fore, the COP is an increasing function of CRAC output
temperature, and the efficiency of the cooling system can
be maximized by raising the CRAC output temperature,
while preventing the room temperature from crossing the
maximum safety temperature [14]. Specifically, assume
the outside environment remains unchanged at datacenter
i for a certain period of time, CRAC units push cool air at
the temperature of T out into the datacenter room to keep
the temperature of datacenter room under the maximum
safety temperature TMAX [14]. However, the tempera-
ture of datacenter room is affected by the temperature of
active servers T server

i , which depends on the number and
placement of current processing workload. To avoid the
temperature of datacenter room from exceeding TMAX ,
the adjusted amount of CRAC output temperature should
be T adj

i = T safe−T server
i . Thus, the adjusted new CRAC

output temperature is Tnew
i = T out+T adj

i . If T adj
i is nega-

tive, it means that CRAC units need to provide more cool-
ing, and vice versa. Based on the COP function shown in
Figure 4, Tnew

i determines the actual COP and, consecu-
tively, determines the efficiency of CRAC units. Therefore,

we have:

COPi = 0.0068Tnew
i

2 + 0.0008Tnew
i + 0.458 (5)

Tnew
i = T out + TMAX − T server

i (6)

In datacenter i, T server
i denotes the highest tempera-

ture of active servers, which is affected by the workload
number and placement in datacenter i [12]. As stated pre-
viously, one datacenter can be divided into three tempera-
ture isolated zones: cool, warm, and hot zone. Therefore,
we have:

T server
i = max

(
Ti,1(mp

i,1), Ti,2(mp
i,2), Ti,3(mp

i,3)
)

(7)

where mp
i,j (0 ≤ mp

i,j ≤ 1) denotes the load percentage of
zone j in datacenter i, Ti,j(m

p
i,j) denotes the temperature

of zone j in datacenter i with mp
i,j [12].

Moreover, the temperature of each zone in every data-
center should not exceed the maximum safety temperature
TMAX :

Ti,j
(
mp

i,j

)
≤ TMAX (8)

Therefore, the Electricity Cost of Cooling Systems (ECCS)
of geographically distributed datacenters located inN sites
is given as:

ECCS =

N∑
i=1

(∑3
j=1mi,j

)
[Pidle + (Ppeak − Pidle)ui]Pri(t)

0.0068Tnew
i

2 + 0.0008Tnew
i + 0.458

(9)

4.4. Total electricity cost model of geographically distributed
datacenters

For a cloud service provider operating N geographi-
cally distributed datacenters in dispersed N locations, the
total Electricity Cost (EC) of N geographically distributed
datacenters could be written as:

EC = ECAS + ECCS

=
∑N

i=1

(∑3
j=1mi,j

)
[Pidle + (Ppeak − Pidle)ui]·

Pri(t)
(

1 + 1
0.0068Tnew

i
2+0.0008Tnew

i +0.458

)
(10)

4.5. Workload component of QoS constraints of geograph-
ically distributed datacenters

Assume that in a time interval, one cloud service provider
operatingN geographically distributed datacenters receives
λ service requests, and datacenter i is assigned with λi ser-
vice requests using a specific workload management scheme.
To ensure that all the service requests are fully processed,
we have:

λ =

N∑
i=1

λi (11)

To process a large number of service requests, one dat-
acenter usually contains hundreds or thousands of servers.
The number of active servers in datacenter i, mi, should
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not exceed the maximum number of servers in datacenter
i, Mi. The number of active servers in zone j of datacen-
ter i, mi,j , should not also exceed the maximum number of
servers in zone j of datacenter i, Mi,j . The load percentage
of zone j in datacenter i, mp

i,j , equals the number of active
servers at zone j of datacenter i divided by the maximum
number of servers at zone j of datacenter i. Therefore, we
have:

mi ≤Mi (12)

mi,j ≤Mi,j (13)

mp
i =

mi

Mi
(14)

Mi =

3∑
j=1

Mi,j (15)

4.6. Delay component of QoS constraints of geographically
distributed datacenters

In this paper, we use the M/M/n queueing model to
model each server in every datacenter [9]. In the M/M/n
queueing model, given the number of active servers n, the
service rate µ, the arrival rate λ, and the probability PQ

of service requests waiting in queue, the average delay d

can be expressed as
1

nµ− λ
PQ. In datacenter i, the ser-

vice rate µi is a function associated with the server’s CPU
utilization ui and the maximum service rate µMAX

i . That
is:

µi = f(ui, µ
MAX
i ) (16)

Without loss of generality, we can assume that active
servers in a datacenter are always busy to process requests
waiting in queue. Hence, we have that PQ equals 1. There-
fore, we have the average delay of datacenter i, di:

di =
1(∑3

j=1mi,j

)
µi − λi

(17)

Additionally, in datacenter i, di should not exceed a
delay constraint Di That is:

di ≤ Di (18)

5. Problem formulation and solution

In this section, we first formulate the electricity cost
minimization problem of geographically distributed data-
centers as a constrained nonlinear optimization problem.
We then transform the complicated original problem to a
convex problem with linear constraints and finally solve
this problem with the proposed JET.

5.1. Problem formulation

Given a workload of λ service requests in a time in-
terval, the optimization goal is to minimize the electricity
cost of geographically distributed datacenters by a work-
load management scheme, so that datacenter i actives mi,1

servers in the cool zone, mi,2 servers in the warm zone, and
mi,3 servers in the hot zone to work together to process
the assigned λi service requests. The optimization prob-
lem is formulated as the Electricity Cost Minimization
(ECM) problem of geographically distributed datacen-
ters, which is shown as follows:

min
∑N

i=1

(∑3
j=1mi,j

)
[Pidle + (Ppeak − Pidle)ui]·

Pri(t)
(

1 + 1
0.0068Tnew

i
2+0.0008Tnew

i +0.458

)
(19a)

subject to
1(∑3

j=1mi,j

)
µi − λi

≤ Di (19b)

µi = f(ui, µ
MAX
i ) (19c)

λ =

N∑
i=1

λi (19d)

Tnew
i = T out + T safe − T server

i (19e)

T server
i = max

(
Ti,1(mp

i,1), Ti,2(mp
i,2), Ti,3(mp

i,3)
)

(19f)

T server
i ≤ TMAX (19g)

mp
i,j =

mi,j

Mi,j
(19h)

mi,j ≤Mi,j (19i)

Mi =

3∑
j=1

Mi,j (19j)

In the proposed ECM problem, the constraints T server
i

and µi are nonlinear, and the objective function EC is non-
linear. Thus, the ECM problem is a constrained nonlinear
optimization problem.

5.2. Transformations and assumptions

Generally, to solve a complicated nonlinear optimiza-
tion problem, a common method is to transform the orig-
inal problem into a standard problem that can be solved
using existing optimization techniques or solvers. In this
section, we transform the ECM problem into the TECM
problem (a convex problem with linear constraints) by rea-
sonable transformations and assumptions on the nonlinear
constraints T server

i , Poi, ui, and the objective function
EC.
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5.2.1. Transformation on the nonlinear constraint T server
i

In the ECM problem, T server
i (Eq.(19f)) is expressed as

a maximum function of three nonlinear functions. As dis-
cussed in Section 4.2, a low T server

i leads to a high COPi.
Since reducing the electricity cost of cooling systems is one
goal of the ECM problem, the efficiency of cooling system
in datacenter i can be maximized by minimizing T server

i .
Given the maximum number of servers in zone j of data-
center i, Mi,j , T

server
i can be obtained through solving a

sub-problem:

minT server
i (20a)

subject to
Ti,j(m

p
i,j) ≤ T server

i (20b)

T server
i ≤ TMAX (20c)

mp
i,j =

mi,j

Mi,j
(20d)

mi,j ≤Mi,j (20e)

In this sub-problem, Ti,j(m
p
i,j) is the combination of

piece-wise curves associated with mp
i,j [12], which depends

on the specific workload management scheme. Thus, it
is impossible to solve the sub-problem without the real-
time information about the state of each datacenter and
electricity prices. Let us go back to the objective func-
tion of ECM problem, also known as EC. In EC, there are
four types of variables, mi,j , T

new
i , ui, and Pri(t). Since

T out and TMAX do not change for each datacenter and
Pri(t) only changes once an hour, during each one hour
interval, mi,j , ui, and T server

i depend on the applied work-
load management scheme. Assume any two types of the
variables are constant, if the other one decreases, EC de-
creases, and vice versa. Therefore, mi,j , ui, and T server

i

have the uniform monotonicity with EC. When the min-
imization of EC is set as the core objective, the solution
of the above sub-problem is included. So we can trans-
form the nonlinear constraint of T server

i into four linear
inequality constraints Eq.(20b), Eq.(20c), Eq.(20d), and
Eq.(20e).

5.2.2. Transformation on the nonlinear objective function
EC

In the ECM problem, the objective function EC (Eq.(19a))
is a nonlinear function. The complexity of EC comes from
T server
i , a nonlinear function related to mp

i,j , in its denom-
inator. Thus, EC can be transformed into a formulation
directly related to mp

i,j by simplifying its fractional com-
ponent. We combine three linear piece-wise zone temper-
ature curves associated with their zone load percentages
(Figure 2) into one datacenter temperature curve associ-
ated with the overall datacenter load percentage, which is
shown in Figure 6. To accommodate potential workload
spikes, each datacenter should maintain sufficient capacity
margins [10]. The capacity margin is based on the volatile
characteristics of workload. The high volatile workload
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Figure 6: Temperature curve of the overall datacenter load percent-
age.
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Figure 7: 1/COPi curve of the overall datacenter load percentage.

need a higher capacity margin and vice versa. In this pa-
per, we use 10% capacity margin for each datacenter. We
bring the temperature curve of datacenter i into the COP
function, take reciprocal of COP, and then get 1/COPi

curve, which is shown as the blue diamond line in Fig-
ure 7. 1/COPi is also a nonlinear function associated
with the overall datacenter load percentage. We use one
dimensional linear regression [15] to substitute the orig-
inal 1/COPi function with K linear piece-wise functions
gk(mp

i ) (1 ≤ k ≤ K), which are shown as the triangle dash
lines in Figure 7. Therefore, we have:

gk(mp
i ) = ak + bkm

p
i , (thk−1 < mp

i ≤ thk) (21)

mp
i =

mi

Mi
(22)

gk(mp
i ) ≤ G (23)

where ak, bk (bk > 0), and thk are, respectively, the in-
tercept, slope, and upper limit for gk(·), mp

i is the load
percentage of datacenter i, and G is the maximum value
of 1/COPi.
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Therefore, we have a new EC:

ECnew =

N∑
i=1

mi[Pidle+(Ppeak−Pidle)ui]Pri(t) (1 + gk(mp
i ))

(24)
The second derivative of ECnew are:

ECnew′′(mi) =
2[Pidle + (Ppeak − Pidle)ui]Pri(t)bk

Mi
> 0,

(25)
ECnew′′(ui) = 0 (26)

Thus, ECnew is a convex function.

5.2.3. Assumptions on the nonlinear constraints Poi and
µi

With power-management, a server’s idle power accounts
for 50%∼65% of its peak power [8]. Thus, we assume:

Poi = 2Pidle (27)

Similar to a related literature [9], we assume that all
the active servers will run close to 100% utilization because
the number of active servers is minimized by the workload
management scheme to reduce the power of active servers,
that is ui = 1. Based on the above assumptions, we have:

µi = µMAX
i (28)

5.3. Problem solution

Based on the above transformations and assumptions,
the proposed ECM problem is simplified to be the Trans-
formed ECM (TECM) problem:

min

N∑
i=1

2miPidlePri(t)

(
1 + ak + bk

mi

Mi

)
(29a)

subject to
1

miµMAX
i − λi

≤ Di (29b)

λ =

N∑
i=1

λi (29c)

ak + bk
mi

Mi
≤ G (29d)

mi ≤Mi (29e)

In the TECM problem, the variables mi and λi are in-
tegers, and the objective function ECnew is a nonlinear
function. Thus, the TECM problem is a Nonlinear Integer
Programming (NIP) problem. However, as shown in Sec-
tion 5.2.2, ECnew is a convex function and all constraints
of the TECM problem are linear. Therefore, we can solve
the TECM problem using the existing optimization tech-
niques and solvers.

The proposed JET includes three steps. In the first
step, the decimal result of the TECM problem can be

obtained by efficient optimization techniques (e.g., Inte-
rior Point method) or solvers (e.g., MINOS 5.5 [16]). In
the second step, the integer result of mi can be obtained
by rounding up mi from the decimal result. In the third
step, we can get the approximate COPi by bringing mi

into Eq.(19) and (20), get T server
i by bringing COPi into

Eq.(4) and Eq.(5), and obtain mi,j with Eq.(7).
JET achieves the trade-off between the performance

and computational complexity. Obviously, we can get the
optimal result by using Branch-and-Cut method in the
second step. However, the optimal result comes with the
high complexity since the complexity of Branch-and-Cut
method is exponential to the number of introduced vari-
ables. In the TECM problem, datacenter i is associated
with two variables mi and λi. For a cloud service provider
operating 10 datacenters, 20 variables are introduced to
the TECM problem. Thus, the TECM problem with the
high computational complexity cannot be solved in a rea-
sonable time. However, in the final result, the number
of active servers in one of the distributed datacenters is at
least in the order of thousands. Thus, without significantly
reducing the performance, we can get the integer result by
rounding up the decimal result of the first step. Based
on the evaluation discussed in Section 6, for a cloud ser-
vice provider with three distributed datacenters, JET us-
ing MINOS 5.5 consumes 15.6 ms on average to determine
the optimal allocations of the request-response type of web
service received per second, such as real-time Google and
Bing search. The electricity cost difference between the
optimal result obtained from Branch-and-Cut method and
the round-up result is less than 0.001%.

In addition, the processing time of JET changes very
slightly as the number of service requests arrived in each
accumulation time Tacm changes. Nowadays, one cloud
service provider only operates a limited number of dis-
tributed datacenters. For instance, Google operates just
about 13 datacenters around the world [17]. For one cloud
provider operating 20 distributed datacenters, if MINOS
5.5 is used as the solver, the processing time of JEC is no
more than 20ms, which is less than the typical user delay
(e.g., 100ms).

6. Evaluation

In this section, we use the real-life workload and elec-
tricity price traces to evaluate the performance of JET
against the existing schemes on electricity cost reduction
of geographically distributed datacenters at two specific
situations. To understand the cost reduction, we ana-
lyze the composition of electricity cost, the variation of
COPs, and the ratio of the number of active servers and
the maximum number of servers on different schemes in
detail. These evaluations are primarily targeted towards
the request-response type of web service, such as real-time
Google and Bing search.
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6.1. Evaluation setup

In our evaluation, we simulate three distributed data-
centers for a cloud service provider. The datacenters 1, 2,
and 3 are assumed to be located in Long Island, NY, Hous-
ton, TX, and Atlanta, GA, respectively. As mentioned in
Section 2, there are two main parallel electricity markets
in the United States. The two locations of Long Island
and Houston are located in the electricity wholesale mar-
ket regions, where the electricity prices vary based on the
grids condition, while Atlanta is in the regulated utility
region, where the electricity prices are fixed for a certain
period of time. For the two locations in the wholesale mar-
ket, we use the traces of Day-Ahead electricity prices from
NYISO [18] and ERCOT [19], respectively. The power
consumption profile of each server in the three datacen-
ters is assumed to be approximately the same: Pidle = 60
watts. The maximum number of servers of the three dat-
acenters are assumed to be 30,000, 60,000 and 25,000, and
their processing capacity coefficients are 4.0, 2.5, and 3.5
service requests per second, respectively.

In our evaluation, we use the water-chilled cooling sys-
tem cooling shown in Figure 2. In each datacenter, there
are four CRAC units, each of which pushes cool air at 15◦C
into the room through floor vent tiles. To prevent the tem-
perature of datacenter room from exceeding the maximum
safety temperature 30◦C, CRAC units adaptively adjust
their efficiency. We validated our cooling system model by
matching the temperature profile reported in [6][14] under
the uniform distribution of a fixed load in each datacenter.

We use two specific situations in this evaluation to com-
pare JET with the existing schemes. In our evaluation,
we use a workload trace containing 10% of Internet traf-
fic arrived at Wikipedia between Oct.1, 2007 and Nov.30,
2007 [20]. Similar to a related study [9], service requests
used in this simulation are collected per second. In Situa-
tion 1, service requests received by the three datacenters
vary, but the electricity prices of the three datacenters are
fixed at Pr1(t) = 42.93$/MWh, Pr2(t) = 20.27$/MWh,
Pr3(t) = 55.30$/MWh. In Situation 2, the arriving ser-
vice requests per second are respectively fixed at 30%,
50%, and 70% of the overall load of the three datacen-
ters, but the electricity prices of the three datacenters
change according to the different regional electricity price
schemes. In this paper, we refer to the overall load of
the three datacenters at 30%, 50%, and 70% as Light
Workload, Medium Workload, and Heavy Workload, re-
spectively. The maximum overall load of the three data-
centers is 90%, since 10% capacity margin for each data-
center is used to accommodate potential workload spikes
[10].

6.2. Schemes for comparison

We compare JET with four datacenter workload man-
agement schemes, which are explained below. Since CIA
[6][7] and EIR [8][9] are partial workload management schemes
as compared with JET, we complement them with random

load balancing. We ran each of the five schemes 100 times
to collect precise statistical characteristics with the intent
to improve the accuracy of the simulation.

Random inter-datacenter and intra-datacenter
Load Balancing (RLB). Arriving service requests are
distributed randomly and uniformly among geographically
distributed datacenters; service requests that arrive at a
datacenter are further randomly sent to servers in the three
zones for execution.

Random InteR-datacenter load balancing plus
Cooling efficiency-aware IntrA-datacenter load bal-
ancing (RIR+CIA) [6][7]. This schemes includes two
steps. RIR is used in the first step, so that incoming ser-
vice requests are uniformly distributed to geographically
distributed datacenters located in different sites. In the
second step, CIA works in each datacenter and distributes
service requests that arrive at the datacenter to certain
servers in order to achieve the minimum temperature dif-
ferences among the three zones of the datacenter. This
scheme cuts down ECCS by selecting servers with the high
cooling efficiency to process service requests.

Electricity price-aware InteR-datacenter load bal-
ancing plus Random IntrA-datacenter load balanc-
ing (EIR+RIA) [8][9]. This scheme also includes two
steps. In the first step, EIR is used among geographically
distributed datacenters to dispatch service requests to dif-
ferent datacenters based on the current electricity prices of
datacenters sites. The datacenter with the lowest electric-
ity price is first fully loaded, and then the datacenter with
the second lowest electricity price will be loaded, and so
forth. In the second step, RIA is used in each datacenter,
and servers are randomly chosen to process the service re-
quests distributed to this datacenter. This scheme reduces
ECAS because it explicitly considers the current electricity
prices at the locations of geographically distributed data-
centers.

Electricity price-aware InteR-datacenter load bal-
ancing plus Cooling efficiency-aware IntrA-datacenter
load balancing (EIR+CIA). This scheme accounts for
the diversity of electricity prices and the efficiency of cool-
ing system in two separate steps. In the first step, among
geographically distributed datacenters, EIR is used to de-
cide the number of active servers for each datacenter based
on the current electricity prices of datacenters in order
to minimize the electricity costs of active servers. In the
second step, in each datacenter, CIA is used to decide
the placement of active servers in the three zones of each
datacenter by considering the efficiency of cooling system
in order to reduce the electricity cost of cooling systems.
Without jointly considering the two factors, EIR+CIA can
cause some undesirable situations. EIR tends to load the
datacenter with the lowest electricity price first. Only
when that datacenter is full, the datacenter with the sec-
ond lowest electricity price will be loaded, and so forth.
In a fully loaded datacenter, CIA cannot be effectively ap-
plied because all servers in the three zones are already ac-
tivated under the heavy datacenter load, and COP cannot
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(a) Total electricity cost of three distributed
datacenters with the variant overall load of
three datacenters.
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(b) Electricity cost of active servers of three
distributed datacenters with the variant over-
all load of three datacenters.

10 20 30 40 50 60 70 80 90
0

100

200

300

400

500

600

700

Overall distributed datacenter load (%)

E
le

ct
ric

ity
 c

os
t (

$)

 

 

RLB
RIR+CIA
EIR+RIA
EIR+CIA
JET

(c) Electricity cost of cooling systems of three
distributed datacenters with the variant over-
all load of three datacenters.

Figure 8: Performance of five workload management schemes under Situation 1.
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(a) RIR+CIA
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(b) EIR+CIA
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Figure 9: COP variation for three workload management schemes under Situation 1.

be increased. As a result, for EIR+CIA, EIR may reduce a
small portion of ECAS, but more ECCS is incurred by the
cooling system. Therefore, EC would be high, as shown in
Fig.7.

JET. The proposed JET combines the inter-datacenter
workload management and the intra-datacenter workload
management into a joint inter- and intra-datacenter work-
load management. For a given workload, JET jointly ac-
counts for the diversity of electricity prices and the ef-
ficiency of cooling system and directly determines both
the number and placement of active servers in the three
zones of each datacenter with the intent to reduce EC. To
cut EC, JEC alternately selects the diversity of electricity
prices or the efficiency of cooling system as the dominator
factor to EC, and achieves the trade-off between ECAS
and ECCS.

6.3. Electricity cost reduction under Situation 1

Figure 8 respectively show the total electricity cost,
the electricity cost of active servers, and the electricity
cost of cooling systems of the three distributed datacen-
ters for five workload management schemes under Situa-
tion 1. In Figure 8(a), RLB costs most since all the service

requests are randomly dispatched to servers of the three
data centers without any optimization. EIR+RIA and
EIR+CIA are aware of the variation of electricity prices
among the three datacenters and achieve the lowest elec-
tricity cost of active servers of the three distributed dat-
acenters for all overall load spans. To analyze the reduc-
tion on the electricity cost in detail, Figure 9 respectively
show the variation of COPs for three low-cost schemes
(i.e., RIR+CIA, EIR+CIA, and JET) under Situation 1.
When the overall load of the three distributed datacen-
ters is lower than 30%, RIR+CIA performs worse than
EIR+CIA. This is because the random distribution of the
small amount workload does not significantly influence the
electricity cost of cooling systems, and the electricity price
is the dominated factor for the electricity cost of the three
distributed datacenters. However, as the overall load in-
creases from 30% to 60%, the efficiency of cooling systems
plays a more important role in the electricity cost of the
three datacenters than the electricity price. For EIR+CIA,
EIR distributes more service requests to datacenters with
lower electricity prices and causes these datacenters heav-
ily or fully loaded. Thus, even if CIA is applied, COP
cannot be increased significantly since all servers in the
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Figure 10: Electricity cost compositions of three distributed data-
centers under Situation 1.

three zones of a heavy loaded datarcenter are already ac-
tivated. In Figure 9(b), when the overall load reaches
40%, the COP of datacenter 2 reaches the efficiency of
lower limit because the electricity price of datacenter 2
is the lowest among the three datacenters. Conversely,
RIR+CIA achieves randomly and uniformly workload dis-
patching among the three distributed datacenters, which
prevents any one of the three distributed datacenters be-
ing heavily loaded and maintains the reasonable efficiency
of a cooling system for each datacenter. In Figure 9(a),
when the overall load is in the range from 30% to 60%,
the COPs of all the three distributed datacenters do not
reach the efficiency of lower limit. Thus, in such condi-
tion, RIR+CIA costs less than EIR+CIA. When the over-
all load of the three distributed datacenters exceeds 60%,
the performance of RIR+CIA and EIR+CIA varies alter-
nately since either the electricity price or the efficiency of
cooling systems alternately becomes the dominated factor
for the electricity cost of the three distributed datacen-
ters. In Figure 8(c), RIR+CIA and EIR+CIA have the
approximately the same electricity cost of cooling systems
at the overall load of 70%. This is because most of servers
with the high cooling efficiency in the three distributed
datacenters have been already activated when the overall
load reaches 60%, and the COPs can not be greatly in-
creased. In Figure 9(a), the COP of datacenter 3 reaches
the efficiency of lower limit when the overall load reaches
70%.

JET performs best for all overall load spans, as shown
in Figure 8(a). The reason is JET achieves dynamic re-
duction on the total electricity cost of the three distributed
datacenters by adaptively considering either the variation
of electricity prices or the efficiency of cooling systems as
the major factor of the total electricity cost as the incom-
ing service requests vary. In Figure 9(c), when the overall
load of the three distributed datacenters is low, datacenter
2 is assigned with more service requests than others, and
its COP is lower than others since it has the lowest elec-
tricity price among the three distributed datacenters. As

Table 2: Percentage reduction of electricity cost of three distributed
datacenters under Situation 1

Load RIR+CIA EIR+RIA EIR+CIA JET

10% 46% 30% 61% 61%

20% 46% 32% 60% 60%

30% 45% 27% 54% 57%

40% 42% -1% -1% 53%

50% 42% 3% 10% 52%

60% 36% 6% 17% 48%

70% 18% 17% 25% 51%

80% 16% 3% 6% 43%
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Figure 11: Hourly electricity prices for three distributed datacenters
on Dec. 14, 2012 for Situation 2.

the overall load increases, the efficiency of cooling systems
become more important than the variation of electricity
prices. Thus, to avoid the fast decrease of the efficiency of
cooling systems in datacenter 2, more service requests are
dispatched to datacenter 1 and 3 , and the COPs of data-
center 1 and 3 decrease. The COPs of the three datacen-
ters do not reach the lower limit efficiency until the overall
load reaches 90%, which is the maximum load of the three
datacenters. In Figure 8(b), JET costs a little more on
the electricity cost of active servers than EIR+RIA and
EIR+CIA. However, as shown in Figure 8(c) JET saves
much more on the electricity cost of cooling systems than
other schemes. Therefore, JET significantly reduces the
total electricity cost of the three distributed datacenters.

To fully understand cost reduction, in Figure 10, we
respectively show the electricity cost of active servers and
cooling systems for five workload management schemes at
three typical datacenter loads in the form of histogram.
RLB and RIR+CIA uniformly distribute service requests
into the three distributed datacenters, and they have the
same electricity cost of active servers for the three particu-
lar loads. However, RLB incurs the high electricity cost of
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(a) Electricity cost of three distributed data-
centers at different times
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(b) Electricity cost of active servers of three
distributed datacenters at different times
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(c) Electricity cost of cooling systems of three
distributed datacenters at different times

Figure 12: The performance of five workload management schemes at Medium Workload under Situation 2.
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(a) RIR+CIA
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(b) EIR+CIA
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Figure 13: Percentage of active servers at Medium Workload under Situation 2.

cooling systems due to the uneven workload distribution
in the three zones of datacenters. Similarly, EIR+RIA
and EIR+CIA also have the same electricity cost of active
servers for the three particular loads since both of them
allocate service requests based on the electricity prices to
reduce the electricity cost of active servers. EIR+CIA fur-
ther lowers the electricity cost of cooling systems by im-
proving the efficiency of cooling systems. As explained
above, JET costs slight more on the electricity cost of ac-
tive servers than EIR+CIA, but it cuts much more on the
electricity cost of cooling systems by rationally dispatching
workload in the three zones of each datacenter to improve
the COP of each datacenter. Hence, JET achieves sub-
stantial reduction on the total electricity cost of the three
distributed datacenters.

In Table 2, we show the percentage reduction of the
electricity cost of the three distributed datacenters achieved
by RIR+CIA, EIR+RIA, EIR+CIA, and JET over RLB
at various overall datacenter loads. It shows that for the
range of 30∼70% of the overall distributed datacenter load
where datacenters operate most of the time [21][22], JET
achieves substantial electricity cost reductions of 48∼57%.
Recall from Section 1 that since the electricity cost is a
great portion in the operational cost of geographically dis-

tributed datacenters, such improvements are significant.

6.4. Electricity cost reduction under Situation 2

Due to different regional electricity schemes, we use the
fixed electricity price for Atlanta and the hourly electricity
prices on Dec. 14, 2012 from NYISO [18] and ERCOT [19]
for Long Island and Houston, which are shown in Figure
11. Clearly, the electricity prices in Long Island and Hous-
ton vary significantly per hour, which makes it possible to
minimize the electricity cost of the three datacenters by
dispatching arriving service requests to those datacenters
with lower electricity prices.

We respectively simulate the five workload manage-
ment schemes at Light Workload, Medium Workload, and
Heavy Workload when the real-life hourly electricity prices
are applied. The simulation results under the three work-
loads are shown in Figure 12, 14, and 15, respectively.
We use the Medium Workload (50% of the overall load of
the three distributed datacenters) as an example to ana-
lyze the performance difference among the five workload
management schemes. Figure 12 respectively show the to-
tal electricity cost, the electricity cost of active servers,
and the electricity cost of cooling systems of the three
distributed datacenters for the five workload management
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(a) Electricity cost of three distributed data-
centers at different times
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(b) Electricity cost of active servers of three
distributed datacenters at different times
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(c) Electricity cost of cooling systems of three
distributed datacenters at different times

Figure 14: The performance of five workload management schemes at Light Workload under Situation 2.
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(a) Electricity cost of three distributed data-
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(b) Electricity cost of active servers of three
distributed datacenters at different times
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(c) Electricity cost of cooling systems of three
distributed datacenters at different times

Figure 15: The performance of five workload management schemes at Heavy Workload under Situation 2.

schemes at Medium Workload when the real hourly elec-
tricity prices are applied. Figure 13 respectively show the
ratio of the number of active servers and the maximum
number of servers for three low-cost schemes under the
same configuration as Figure 12. In Figure 12(a), both
EIR+RIA and EIR+CIA perform worse than RLB for
most of time. This is because the EIR-related schemes
dispatch service requests among distributed datacenters
only considering the variation of electricity prices. Thus,
the datacenter with low electricity price is easily got heav-
ily or fully loaded. In Figure 13(b), in each hour, one of
the distributed three datacenters reaches 90% load (the
maximum load of a datacenter), but the heavily loaded
datacenter varies hourly according to the variation of elec-
tricity prices. Therefore, the datacenter with low electric-
ity price costs more on the high electricity cost of cooling
systems, as shown in Figure 12(c). For RIR+CIA, since
the number of active servers for RIR does not change with
the variation of electricity prices, RIR costs more on the
electricity cost of active servers than EIR. However, CIA
reduces the electricity cost of cooling systems as much as
possible by rationally assigning the workload in each dat-
acenter. JET achieves the trade-off between EIR and CIA

since it is aware of both the variation of electricity prices
and the efficiency of cooling systems. In Figure 13(c), the
number of active servers of JET slightly changes with the
variation of electricity prices, as compared with those of
EIR+CIA. In Figure 13 and 14, JET outperforms other
four schemes, especially when the three distributed data-
centers are under Heavy Workload.

7. Related work

Electricity cost has become the major proportion of
the operational cost of geographically distributed datacen-
ters. Many efforts have been spent to reduce the electricity
cost of geographically distributed datacenters by the opti-
mal datacenter workload management mechanisms. Some
studies focused on the reduction of the power consumption
of active servers in a datacenter by the intra-datacenter
workload management. Elnozahy et al. [4] reduced the ag-
gregate power consumption of server farms by dynamically
adjusting voltage scaling and server node on/off states.
Heo et al. [3][23] investigated dynamic cluster server con-
figuration to minimize power consumption through con-
solidating workload on a subset of servers and turning off
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the rest during low workload periods. Barrsos et al. [21]
did research on how to use Chip Multi-Processor (CMP)
to achieve power management. Raghavendra et al. [24]
suggested a coordination architecture to regulate different
individual approaches in multi-level power management.

With the increasing high density of servers, the power
consumption of cooling systems has become a major com-
ponent of the power consumption of geographically dis-
tributed datacenters. Research studies show that the power
consumption spent on a cooling system can take up to 50%
of the total power consumption of a datacenter [5]. Hence,
some studies proposed the intra-datacenter workload man-
agement to reduce the power consumption of servers and
the cooling system in a datacenter through enforcing the
impact of workload distribution on the power consump-
tion of the cooling system. Sharma et al. [6] and Bash
et al. [7] analyzed the physical structure of the datacen-
ter and achieved substantial power savings by allocating
heavy workload onto servers, which are in more efficient
cool places.

The ultimate goal of cloud service providers is to re-
duce the electricity cost of geographically distributed dat-
acenters, which depends on not only the power consump-
tion of datacenters but also the locational electricity prices
of geographically distributed datacenters. Due to various
power generation and transmission profiles in different re-
gions, the electricity prices of United States exhibit lo-
cation and time diversities. Several works proposed the
inter-datacenter workload management to reduce the elec-
tricity cost of active servers by considering the location
and time variation of electricity prices. Qureshi et al. [8]
proposed to monitor the time-varying locational electric-
ity prices and periodically to distribute service requests to
server clusters with lower electricity prices in a content de-
livery network to cut the electricity cost of the content de-
livery network. Rao et al. [9] achieved the reduction on the
electricity cost of active servers under a multi-electricity-
market environment while guaranteeing QoS.

Both the intra-datacenter workload management and
the inter-datacenter workload management have obvious
disadvantages since each of them only considers one factor
that influences the electricity cost of geographically dis-
tributed datacenters and can not globally and minimize
the total electricity cost of geographically distributed dat-
acenters. Recently, some publications jointly took into ac-
count more devices besides servers to minimize the elec-
tricity cost of geographically distributed datacenters. Li et
al. [10] have proposed to lower the electricity cost of server
facilities as well as cooling systems. Zhang et al. [11] have
proposed to minimize the electricity cost of server facili-
ties, cooling systems, and networking devices. However,
these studies have not considered the real-life cooling sys-
tem and made an unrealistic assumption that the cooling
system consumes constant power in the datacenter. The
assumption is invalid for geographically distributed data-
centers since the uneven workload distribution in a data-
center could affect the efficiency of a cooling system. Based

on the analysis in [6][7][12], the workload distribution in a
datacenter can significantly affect the power consumption
of a cooling system, and it should be taken into consid-
eration as an important factor by cloud service operators
to reduce the electricity cost of geographically distributed
datacenters.

Besides the studies that focus on minimizing the elec-
tricity cost of active servers and cooling systems, there
are some other researches aiming at minimizing the power
consumption of datacenter network. Heller et al. [25]
have achieved power saving on datacenter network using
a network-wide power manager ElasticTree, which con-
solidates traffic flows onto as few routes as possible and
turns off unused switches and links. Wang et al. [26] have
proposed a correlation-aware power optimization scheme
CARPO, which consolidates flows with low correlation to-
gether to further save power based on a observation that
bandwidth demands of different flows do not peak at the
same time in real datacenter networks.

To fully utilize the time diversity of electricity prices,
some recent proposal present to reduce the electricity cost
of datacenters by using the electricity which are stored
into energy storage devices when the electricity price is
relatively low. Urgaonkar et al. [27] have explored the
chances in reducing server power bill by the use of un-
interrupted power supply (UPS) units as energy storage
devices for datacenters. Zhang et al. [28] have proposed
to leverage thermal and energy storage techniques (e.g.,
ice/water-based thermal tanks, UPS batteries) to store
electricity when the electricity price is relatively low and
to use those stored energy to cool the datacenter when the
electricity price is high. However, the devices for energy
storage techniques (e.g., thermal tanks, UPS) need extra
cost for cloud service providers.

Due to the global energy crisis and environmental con-
cerns, green datacenter using the renewable energy is be-
coming an increasingly important topic for clouds service
providers. Steward et al. [29] have tried to maximize the
use of renewable energy in datacenters. Zhang et al. [30]
have proposed to maximally use the renewable energy sub-
ject to the cost budget of the cloud service provider as well
as being aware of the time-varying electricity prices.

8. Conclusion

One of the key questions faced by many cloud service
providers is how to reduce the electricity cost of geograph-
ically distributed datacenters. Current studies mainly fo-
cus on either the impact of variant electricity prices on the
electricity cost of active servers or the impact of datacen-
ter workload distribution in a datacenter on the electricity
cost of a cooling system, but neglect the joint optimiza-
tion of these two aspects. In this paper, we propose a joint
inter- and intra-datacenter workload management scheme
JET, which jointly takes into account the two factors to re-
duce the total electricity cost of geographically distributed
datacenters. As the incoming service requests vary, JET
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alternately selects the variation of electricity prices or the
efficiency of cooling systems as the major factor for the
electricity cost of geographically distributed datacenters,
and achieves substantial reduction on the electricity cost
of geographically distributed datacenters.

In future, we plan to extend JET in the following as-
pects: (1) consider other types of workloads (e.g., service
requests with different processing durations), (2) design a
hierarchical/distributed architecture for managing of geo-
graphically distributed datacenters, (3) consider more real-
life constraints (e.g., propagation delay, the temperature
dynamics of the three zones), (4) study other state-of-
the-art cooling solutions (e.g., ambient air cooling, hot
aisle/cold aisle containment).
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