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Abstract—While the software-defined networking (SDN)
paradigm is gaining much popularity, current SDN infrastructure
has potential bottlenecks in the control plane, hindering the
network’s capability of handling on-demand, fine-grained flow
level visibility and controllability. Adversaries can exploit these
vulnerabilities to launch distributed denial-of-service (DDoS) at-
tacks against the SDN infrastructure. Recently proposed solutions
either scale up the SDN control plane or filter out forged traffic,
but not both. We propose SDNShield, a combined solution to-
wards more comprehensive defense against DDoS attacks on SDN
control plane. SDNShield deploys specialized software boxes to
improve the scalability of ingress SDN switches to accommodate
control plane workload surges. It further incorporates a two-
stage filtering scheme to protect the centralized controller. The
first stage statistically distinguishes legitimate flows from forged
ones, and the second stage recovers the false positives of the
first stage with in-depth TCP handshake verification. Prototype
tests and dataset-driven evaluation results show that SDNShield
maintains higher resilience than existing solutions under varying
attack intensity.

Keywords—software-defined network (SDN), distributed denial-

of-service (DDoS), scalability, security

I. INTRODUCTION

Facing increasing administrative complexity and demand
for service innovation in production networks, the information
technology industry is moving forward with software-defined
networking (SDN) [1], a revolutionary networking paradigm
that enables unprecedented level of controllability and au-
tomation. The core idea of SDN is to decouple the control
plane logic from forwarding devices to a logically centralized
controller. It breaks the ossified legacy architectures and en-
ables the control plane and data plane to evolve independently:
The simplified programmable data plane focuses on perfor-
mance optimization, while the centralized controller possesses
a global abstraction of the network that greatly facilitates
network-wide coordination, automation and customization.

OpenFlow protocol [1], [2] is the first and most widely
adopted standard interface between the decoupled control and
data plane. OpenFlow implements reactive flow installation
by default. That is, each new flow generates a flow request
transaction upon its arrival to get routed in the network.
When an OpenFlow switch receives a packet that doesn’t have
a matching entry in its flow tables, it treats the packet as
the arrival of a new flow. The packet is then encapsulated
in an OpenFlow packet_in message, which is sent to

the OpenFlow controller for routing/policing decision via a
secure TCP connection. In return, the controller sends out
flow_mod messages to program a forwarding route into the
data plane. We refer to the entire path traversed by a flow
request transaction as the SDN control path.

Although the network administrator can proactively install
policies to handle these flows in an aggregated manner, many
innovative SDN-inspired network applications in fields like
traffic engineering [3] and service chaining [4], [5] rely
on reactive installation for per-flow level customization and
control. While reactive flow installation achieves fine-grained
controllability, several studies [6], [7] have shown that cur-
rent SDN infrastructure have potential bottlenecks that could
hinder the network’s capability of handling large amounts
of flow request transactions. Particularly, the hardware and
software constraints along the SDN control path between
edge OpenFlow switches and the centralized controller are the
limiting factors [6]. The bottlenecks give rise to the threat
of distributed denial-of-service (DDoS) attacks against the
SDN infrastructure. We name this type of attacks SDN-DDoS:
Malicious third parties can hire an army of compromised hosts,
a.k.a. zombies, to flood the edge OpenFlow switches with large
amounts of spoofed flow arrivals, with non-repetitive random
header patterns. Without proper protection, this would in turn
flood the SDN control plane with flow requests. Legitimate
flow arrivals are crowded out by forged ones, leading to
performance degradation and massive interruption of the entire
SDN network. Unlike traditional DDoS attacks, most of which
target only at an end host or service, SDN-DDoS attacks
overwhelm the SDN network infrastructure, and have a much
broader scope of damage.

The scalability issues of SDN control plane and potential
threat of DDoS have gained much research interest recently
[6]–[10]. There are two main approaches of defense against
SDN-DDoS attacks. The first approach is to scale up: improve
SDN control plane’s capability to accommodate higher control
workload. For example, Scotch [6] identifies that the software
components of commodity OpenFlow switches are a major
bottleneck of the SDN control plane. On the other hand,
server-based software switches can handle higher amounts
of control plane transactions. Scotch elastically scales up
the SDN control plane capacity by using a software switch-
based overlay network, and protects SDN network edges, i.e.
the commodity OpenFlow switches, from anomalous control
workload surges.
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The scale-up approach focuses on providing higher capac-
ity to SDN network edges, but forged flows are not scrubbed
and make their way to the centralized controller. The second
approach is to filter: check each flow’s validity and block the
forged ones from the SDN network. For example, Avant-Guard
[9] implements TCP SYN cookie and proxy functions [11]–
[13] in the data plane, and only admits those who can complete
the TCP three-way handshake into the SDN control plane.
Avant-Guard effectively eliminates the impact of adversarial
behaviors, e.g. TCP SYN flooding, on the centralized con-
troller.

We believe that a more comprehensive defense can be
achieved by joining the strengths of both approaches. In this
article, we propose SDNShield, a defense framework that
protects both the SDN network edges and the centralized con-
troller from SDN-DDoS attacks. SDNShield deploys an array
of customized software switches named attack mitigation units
(AMU) near the SDN network edges, and leverage their elastic
processing power to overcome the bottlenecks at the SDN
network edges. Furthermore, the AMUs implement a two-stage
filtering scheme to protect the centralized controller. The first
stage, statistical differentiation (SD), identifies legitimate flows
with low complexity. While the flows rejected by the SD stage
may contain some false positives, they are in turn inspected by
the second stage, TCP connection verification, to ensure that
all legitimate flows are accepted.

Our work makes the following contributions:

• We analyze the bottlenecks in commodity forward-
ing devices and identify subsequent vulnerabilities of
SDN network operation.

• We identify and demonstrate the impact of SDN-
DDoS, a novel security threat for current SDN in-
frastructure, and state implications to the design of
effective countermeasures.

• We propose SDNShield, a defense framework that
joins the strengths of software switches and filtering
algorithms to protect the SDN control plane against
SDN-DDoS attacks.

• We perform extensive evaluation to demonstrate that
SDNShield is capable of effectively defending the
SDN control plane against SDN-DDoS attacks, with
less penalty on flow setup time compared to alternative
schemes.

The rest of this article are organized as follows: Section
II discusses the threat of scalability issues of SDN operation
and threats of SDN-DDoS. Section III illustrates the details
of system design of SDNShield. The evaluation scheme and
results are provided in Section IV. Section V discusses related
works and our difference from them. Finally, Section VI draws
the conclusion and indicates future work directions.

II. SCALABILITY ISSUES AND SECURITY THREATS

A. Scalability Issues of Commodity OpenFlow Devices

A fundamental difference of SDN network operation from
legacy is that the control plane decisions are not made locally
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Fig. 1: OpenFlow control path and flow request transaction

at forwarding devices, but entirely at the centralized controller.
The controller and forwarding devices communicate via an
SDN interface protocol to request resources, exchange states
and configure the network to administrator’s needs. While
there are a number of competing candidates, OpenFlow is so
far the most widely adopted standard for SDN interface pro-
tocol among the information technology industry. By default,
OpenFlow enforces reactive flow instantiation. Each new flow
arrival triggers a flow request transaction between on-path for-
warding devices and the OpenFlow controller. Understanding
the underlying scalability issues of these transactions requires
a deeper look into the OpenFlow control path.

Figure 1 illustrates the structure of the OpenFlow control
path. An OpenFlow switch consists of two layers: the hardware
layer and the software layer. The main component of the
hardware layer is are programmable ASIC or FPGA modules
optimized for tasks including table lookup, buffering and
forwarding. The software layer runs an instance of light-
weight operating system (OS), usually a miniature adaptation
of Unix/Linux [14], [15], on top of a general-purpose CPU.
OpenFlow protocol-related tasks such as message creation,
parsing and measurement collection are handled by OpenFlow
Agent (OFA), which runs as a user-space process on top of
the OS.

Figure 1 also shows a walkthrough of the flow request
transaction: When an ingress OpenFlow switch’s hardware
layer receives a packet that doesn’t match any entry in its
flow tables, the packet will be treated as the arrival of a new
flow. The packet is by default sent to the software layer via the
switch’s internal interface (Step 1). The OFA buffers the new
flow packet, encapsulates all or part of the packet’s information
in an OpenFlow packet_in message, and then sends it to the
OpenFlow controller via a pre-configured secure channel (Step
2). When the controller receives the packet_in message, it
makes routing decision based on the encapsulated information.
In return, the controller will send out flow_mod messages to
install flow table entries to switches on the route. Meanwhile,
it will also send out a packet_out message to notify the
ingress switch to release the buffered packet, if it is buffered
(Step 3). The switches parse the return messages in the OFAs,
and configure their flow tables according to the controller’s
instructions (Step 4). When transaction completes, the flow’s
packets will be forwarded along the configured route (Step 5).

A flow request transaction involves multiple resources and
poses several scalability issues along the control path. We
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Fig. 3: Impact of SDN-DDoS on legitimate flows

define the switch-to-controller control path as inbound (Step
1 and 2), and its controller-to-switch counterpart as outbound
(Step 3 and 4). Here we discuss the underlying issues of each
control path component:

1. Inbound Control Path: The major bottleneck of the
inbound control path is the commodity switch’s OFA. For
cost reasons, many commodity OpenFlow switches run their
software layers on top of low-end, single-core or dual-core
embedded CPUs. This limits the OFAs capacity of handling
OpenFlow protocol events and messages. Wang et al. [7]
examined two models of commodity top-of-rack OpenFlow
switches, and found out they are only capable of creating an
average of 500 to 1000 packet_in messages per second.
The switch’s protocol handling performance can also be hin-
dered by other factors, such as the narrow interface between
software and hardware planes, and the encryption requirements
on the secure channel.

2. Outbound Control Path: The two limiting factors of the
outbound control path are the commodity switch’s limited flow
table update speed and capacity. Commodity switches rely on
ternary content addressable memory (TCAM) for line-speed
lookup tables. However, TCAM comes in limited size, and is
a scarce resource in the face of possible DDoS threats. On
the other hand, a commodity switch’s table update speed is
limited by several factors: the slow OpenFlow flow_mod

message parsing at the OFA, the narrow interface between the
switch’s software and hardware planes, and the priority-based
rule insertion at the TCAM table.

3. Centralized OpenFlow Controller: The centralized con-
troller easily becomes a bottleneck and single point of failure
of the entire SDN network. Although the controller can be
dynamically scaled up with server clusters and protected
by hot redundancy, still we consider the case in which the
controller cannot be quickly provisioned, and desire to shield
the controller from the attack of forged flows for maximum
security.

B. Threat of SDN-DDoS

With several potential bottlenecks along the control path,
current SDN infrastructure falls short of supporting high-
frequency flow request transactions. This weakness can be
exploited by adversaries to initiate SDN-DDoS attacks that
cause massive interruption of normal SDN operation. Figure 2
shows an example attack scenario. The attacker can employ an
army of zombies to simultaneosly send large amounts of forged
flows, with randomly permuted flow signatures. This will
deplete SDN control path resources and crowd out legitimate
flows.

We demonstrate the impact of SDN-DDoS on legitimate
traffic with the following experiment: We inject to Pica8 P-
3297 [16], a commodity OpenFlow switch, legitimate flows
at a fixed arrival rate of 200 flows/sec, and forged flows at
a variable arrival rate. We ensure the OpenFlow controller is
powerful enough such that it doesn’t become the bottleneck of
the control path. As shown in Figure 3, at an attack intensity
over 300 flows/sec, some legitimate flow requests get dropped.
More than 60% of legitimate flows fail to install at an attack
intensity of 1200 flows/sec.

Unlike traditional DDoS attack scenarios, in most of which
only a specific host network or service is targeted, SDN-DDoS
attacks the network infrastructure itself and hence is a much
more serious threat. Also, it is worth noticing that one forged
packet is sufficient to trigger a flow request and all together
the attack does not consume much bandwidth, making it easier
for malicious third parties to launch and deliver the attacks.

III. SDNSHIELD SYSTEM DESIGN

The essential idea of SDNShield is to deploy a defense
line of NFV-based Attack Mitigation Units (AMU) to scalably
and intelligently protect the SDN control path from SDN-
DDoS bombardment. There are several benefits in developing
SDNShield under the NFV paradigm: First, AMUs run on
general-purpose servers, which can be purchased at low costs
thanks to economy of scale. Second, software implementation
allows higher level of customization at a faster development
cycle than hardware. Third, virtualization allows SDNShield
to elastically scale up to meet defense requirements.

Before going through the design of SDNShield, Section
III-A discusses how SDNShield is motivated by recent trends
in NFV deployment and software switch technologies:

A. Trends in NFV and Software Switches

There is a trend among major Internet service providers
(ISP) of transitioning from traditional vender hardware-
oriented networking into the NFV paradigm. A notable exam-
ple is AT&T’s vision of Domain 2.0 [17]: ISPs are deploying
NFV infrastructure (NFVI) clouds near their backbone network
edges, aka. provider edges (PE), and moving the complexity
of service customization into the cloud environment. This
helps ISPs to achieve reduced vendor hardware costs, elastic
scalability, and faster innovation. Following this trend, we
expect that computational resources will become increasingly
available at network edges.
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Meanwhile, software switch solutions like Open vSwitch
(OVS) [18] potentially achieve better control path scalability
than commodity hardware ones. As was discussed in Section
II-A, a commodity OpenFlow switch’s capability of handling
flow arrivals is limited by its weak OFA in the software
layer, and limited table size in the hardware layer. Software
switches could outperform commodity OpenFlow switches in
this part for several reasons: The high-end CPUs equipped in
general-purpose servers grant OFA more computing power for
OpenFlow protocol processing, and the abundance of memory
allows much larger lookup tables, mitigating the table size
limit problem.

Figure 4 shows a comparison between an OVS instance and
a physical OpenFlow switch (Pica8 P-3297 [16]) under mas-
sive overload situations. We compare the commodity switch
against an OVS instance running on a virtual machine (VM)
equipped with a dedicated Intel Xeon 2.60 GHz core and 8
gigabytes memory. While the physical switch can only endure
a workload of around 500 flows/sec, the OVS handles up to
4000 flows/sec without dropping any flow. This demonstrates
our argument that software switches could better handle flow
request transactions than commodity switches. We also test the
flow table update speed of physical and software switches by
sending out flow_mod messages (with no rule priority) from
the OpenFlow controller. Our measurement results show that
the physical switch can only support up to 2000 updates/sec
while the software switch can achieve more than 10000
updates/sec.

However, software switches suffer from the drawbacks that
they have lower forwarding throughput as well as higher packet
latency. These are due to the facts that general-purpose servers
are not optimized for data plane forwarding, and the buffer
management mechanisms in many existing software switch im-
plementations bring undesired overhead to packet forwarding.
Although recent solutions mitigate these inefficiencies [19], as
a guideline, it is still desired to differentiate legitimate flows
from attacking flows, and have them installed on physical
switch paths as much as possible to minimize the impact.

B. SDNShield System Overview

Figure 5 shows the overall architecture of SDNShield.
SDNShield coordinates a defense line of AMUs, which are
deployed on-demand in NFVI clouds at network edges. An

Host AHost B

AMUController
Stage 1

(SD)
Stage 2
(TCV)

SDN Network

Hypervisor
Ctrl Channels to Devices

VM VM

Fig. 5: SDNShield System Architecture

AMU is a specialized cluster of VMs which can either run
on a single server or a server cluster, and is connected to the
protected edge switch via a data port. For ease of management,
we assume an one-to-one mapping between the edge switches
and AMUs.

SDNShield incorporates two defense stages. The first stage
is statistical differentiation (SD). The design of the SD stage
is to quickly identify the legitimate flows, send their flow
requests via the usual control path, and route them via high-
throughput physical switch routes. In this way, most legitimate
flows achieve higher throughput and low overhead on their
flow setup time.

However, the statistical approach inevitably yields false
positives. That is, there are some legitimate flows falsely
classified as suspicious ones. Knowing that most Internet
traffic and critical connections are TCP-based, to address the
false positive issue, we add a second stage, TCP connection
verification (TCV), to double-check the rejected flows. This
stage ensures that legitimate TCP flows can get routed with
some extra verification.

The details of our two-stage defense scheme are provided
in Section III-C and III-D, respectively.

C. Statistical Differentiation (SD) Stage

The Statistical Differentiation (SD) stage is inspired by
PacketScore [20], [21] and its serial works. The key idea is
to distinguish legitimate flows from forged ones by estimating
each flow’s likelihood of being legitimate. This can be done
by comparing recently measured traffic characteristics to a
reference model of normal network behavior. The flows with
high likelihood of being legitimate are referred to as in-profile
flows, and are directly requested via the usual SDN control
path for minimized overhead on flow setup time. Flows with
low likelihood of being legitimate are referred to as out-
of-profile flows, and requires further check which will be
discussed in Section III-D.

We discuss the details of the SD stage in three phases:
detection, differentiation and divert.

1. Detection Phase: The controller continuously monitors
each edge switch’s performance metrics, particularly the arrival
rate of packet_in messages. A potential SDN-DDoS attack
is detected when the packet_in arrival rate of a switch
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exceeds a certain threshold. In response, the controller will
activate SDNShield defense by modifying the switch’s default
forwarding rule (supported by OpenFlow version 1.3 and
above), such that table-missing packets are forwarded to the
corresponding AMU via a data port. In this way, the packets
will circumvent potential bottlenecks in the weak software
layer of the switch, as was discussed in Section II-A. In our
case we use a threshold of 80% of the switch’s maximum
admissible rate, which is measured offline.

2. Differentiation Phase: To differentiate legitimate flows
from forged ones, the system keeps two types of profiles: (1)
The nominal profile, a predictive model that characterizes the
expected normal behavior, calculated from historical measure-
ments; (2) The measured profile, which is a snapshot of current
statistical footprints of flow arrivals. A scoreboard system is
then calculated from the two profiles to evaluate “how likely
an incoming flow request is legitimate”.

Building the profiles: Each of the two profiles inspects the
five attributes that define a transport layer flow, i.e. the 5-
tuple (source IP, destination IP, source port, destination port,
protocol identifier). For each attribute, the profile keeps a
histogram of frequency distribution in terms flow counts.
Figure 7a and 7b give a miniature example of the two profiles,
showing only the histograms of destination IP.

Evaluating likelihood of legitimacy: The statistical differen-
tiation stage uses a conditional legitimate probability (CLP),
a Bayesian-theoretic metric ,as the core metric to evaluate the
“how likely a flow is legitimate”. The definition of CLP is
described in the following: We denote measured and nominal

profiles by subscripts m and n respectively. ⇢
n

and ⇢

m

denote
the total workload in nominal and measured profiles, in terms
of flows/sec. We also denote the 5-tuple attribute values by
A,B,C,D and E. Suppose the SD stage receives a flow f

with 5-tuple attribute values A = f

a

, B = f

b

, C = f
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Here JP

n

and JP

m

denotes joint probability in nominal
and measured traffic, respectively. Assuming that the five
tuples are mutually independent, the joint probability equals
to the multiplication of individual attribute value’s marginal
probabilities. We denote the marginal probability of X = f

x

in profile y by P

y

(X = f

x

). Then, Equation 1 can be rewritten
as:
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Deriving a scoreboard system: Equation 2 can be trans-
formed from the multiplicative/divisive form into addi-
tive/subtractive form, which is more friendly to general-
purpose CPUs, by taking logarithm of both sides:

log(CLP (f)) = (log(⇢
n

)� log(⇢
m

))

+
X

X=A···E

(P
n

(X = f

x

)� P

m

(X = f

x

)) (3)

In this way, a simple additive scoring system can be derived
from Equation 3. We define each attribute value’s score as
score(X = f

x

) = log(P
n

(X = f

x

))� log(P
m

(X = f

x

), the
workload score as score(⇢) = log(⇢

n

) � log(⇢
m

). Then, the
total score of flow f as score(f) = CLP (f) is:

score(f) = score(⇢)

+
X

X=A,B,C,D,E

score(X = f

x

) (4)

That is, a flow’s score is the sum of its workload score and
each attribute’s score, so for 5-tuple, there are five scoreboards,
and a workload score. Figure 7c shows the destination IP
scoreboard calculated from profiles shown in Figure 7a and
7b. It is easy to see that when the measured workload is higher
than nominal, the workload score will be negative. On the other
hand, if the marginal probabilities P

m

(X = f

x

) < P

n

(X =
f

x

), score(X = f

x

) will be positive, which indicates that
flows with X = f

x

have higher probabilities to be legitimate.
As a result, legitimate flows generally receive higher scores
than forged ones.

3. Divert Phase: Equation 4 defines a scoreboard system
where anomalous flow requests have lower CLPs, and there-
fore receive lower scores. SDNShield compares each flow’s
score against a threshold. Flows with higher scores are ruled
as in-profile and directly requested via the usual SDN control
path, and installed to the physical switches, as was shown in
Step 3 to 5 in Figure 6. Flows with lower scores will be ruled as

2016 IEEE Conference on Communications and Network Security (CNS)



AMU

Hypervisor

SD TCV

Host AHost B

AMU

Controller

packet_in

2

4

5

3

Ingress

1
6

5
2

Fig. 8: Defense flow of TCP connection verification stage

out-of-profile, and forwarded to the second stage, TCV, for in-
depth TCP connection verification. The threshold is dynamic,
and periodically adjusted by the controller to maintain an
overload control goal, i.e., at any time, the rate of passed
flows is approximately a pre-specified target workload, ⇢

target

,
regardless of the attack intensity.

Discussion: It is worth noticing that the scoreboard system can
be incorporated into a multi-table pipeline, which is supported
by OpenFlow standard version 1.3 and above. The multi-table
pipeline structure readily implemented in OVS with perfor-
mance optimization and requires only minor modifications to
meet our needs.

D. TCP Connection Verification (TCV) Stage

The SD stage is efficient in differentiating legitimate and
forged flows. However, it also intrinsically generates false
positives, i.e. legitimate flows falsely classified as out-of-
profile. Though false positive flows are relatively rare, in an
SDN environment, dropping these flows directly is not recom-
mended, as this may cause some legitimate users blocked out
indefinitely.

Knowing that most of the Internet traffic and a majority of
critical connections are based on TCP, we develop a second
stage of defense, TCP connection verification (TCV), to further
check the validity of these flows. The general idea of TCV
stage is to locally verify that a new TCP flow can complete
a three-way handshake, before allowing it to inject a flow
request to the SDN control path. In this way, the control path
as well as the centralized controller are protected from TCP
SYN flooding attacks, since forged TCP flows with spoofed
source IP can not complete the three-way handshakes,

The TCV stage is inspired by TCP SYN cookie and
proxy [9], [11], a popular DDoS countermeasure adopted by
commercial systems like Cisco TCP Intercept [12], Juniper
SYN Cookie Protection [13] and latest Linux releases. Figure
8 shows TCV stage’s defense flow, where Host A is initiating
a TCP connection to Host B. The TCV Stage contains the
following phases:

1. Handshake verification phase: When the first packet of
a TCP flow, i.e. the SYN packet, is classified as out-of-
profile in the SD stage, it is not directly dropped by the
AMU but redirected to the TCV stage (Step 1 of Figure 8).

The TCV stage plays the role of SYN proxy, sending back a
SYN+ACK packet on behalf of Host B. The initial sequence
number is elaborately chosen by SYN cookie encode algorithm
[11]. When a returning ACK packet from Host A is received,
the TCV stage can verify the connection’s validity using the
corresponding decode algorithm (Step 2). Instead of keeping
track of each handshake’s state, SYN cookie decoding is done
in a stateless manner, reducing the risk of memory exhaustion
at the AMU.

The AMU must deliver the SYN+ACK packet to Host A
via the ingress switch. However, mapping each host IP to its
ingress port at the physical switch would create exactly the
same scalability problem we discussed in Section II. To solve
this problem, we can encapsulate the ingress port information
in a VLAN tag for each incoming SYN packet. The returning
SYN+ACK packet also encapsulate this information, so the
physical switch can correctly deliver the SYN+ACK packet to
Host A, without keeping individual host-to-port mapping.

2. Flow request and connection completion phase: The
AMU completes the three-way handshake with Host on behalf
of Host B, but Host B has no knowledge about this connection
yet; hence the AMU must launch the second-round handshake
with Host B, on behalf of Host A. To establish the connection,
the AMU sends a packet_in message to request a route
from Host A to Host B (Step 3). The packet_in message
encapsulates the SYN packet of the second-round handshake,
which is later injected by the controller with a packet_out
message (Step 4). The SYN packet reuses the initial sequence
number chosen by Host A in the first-round handshake for
TCP protocol conformity.

3. Connection relay phase: Host B will complete the hand-
shake via the established route (Step 5). In the second-round
SYN+ACK packet, Host B may choose an initial sequence
number different from that chosen by AMU in the first-round
handshake. To ensure that the SYN proxy is transparent to both
sides of the TCP connection, the route between Host A and B
must traverse the AMU, and the AMU must relay both sides of
the TCP connection by performing sequence/acknowledgement
number translation (Step 6). There exists a constant offset
between the initial sequence numbers on both sides, so the
translation is a constant add/subtraction operation to align the
sequence/acknowledgement numbers. In cases that the second-
round handshake fails due to invalid destination IP or rejection
by Host B, the AMU will notify the controller and remove the
route.

Discussion: The TCV stage has higher computational com-
plexity on each processed packet than the SD stage, as it
involves more complicated operations such as hashing and
L4 header modifications. The TCV stage ensures that all
legitimate TCP flows are verified and routed in the SDN
network. It does not apply to non-TCP flows. However, the
SD stage takes the 5-tuple into consideration, and therefore
can detect and reject forged UDP flows with high accuracy.
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Metric Definition
True positives (TP) # of Forged flows ruled as out-of-profile
True negatives (TN) # Legitimate flows ruled as in-profile
False positives (FP) # Legitimate flows ruled as out-of-profile
False negatives (FN) # Forged flows ruled as in-profile
False positive rate (FPR) FP/(FP + TN)
False negative rate (FNR) FN/(FN + TP)

TABLE I: Definition of SD Stage accuracy metrics

Attack
intensity

(flows/sec)
TP TN FP FN FPR

(%)
FNR
(%)

100 14762 92432 831 15331 0.891 50.945
200 46605 92810 453 14397 0.486 23.601
300 77801 93096 167 14052 0.179 15.298
600 166472 93039 224 15615 0.240 8.349
1200 343987 93127 136 15517 0.146 4.316
2400 706175 93148 115 14294 0.123 1.984
4800 1430598 93135 128 14816 0.137 1.025

TABLE II: Accuracy measurements of the SD stage

IV. EVALUATION

A. Prototype Tests

We prototype the SD and TCV stages on two separate
VMs running on top of a KVM hypervisor. Each VM is
assigned a dedicated Intel Xeon core running at 2.60 GHz,
and 8 gigabytes of memory.

SD Stage Scalability: We integrate SD stage’s score lookup
tables (see Section III-C) into OVS’s multi-table pipeline
structure. Our experiment results show that our prototyped SD
stage can handle an average of 330000 5-tuple score lookups
per second.

A concern is that whether using a finer-grained nomi-
nal profile, which installs more entries at the each stage at
the multi-table pipeline, will lead to decreased score lookup
throughput. Our experiment results shows that when we use
4096 buckets in the source/destination IP stages, the lookup
throughput is 91.7% of that yielded by the case of 1024
buckets. This indicates that fine-grained nominal profile may
have slightly negative impact on the SD stage’s processing
capacity.

TCV Stage Scalability: We implement the TCP cookie func-
tions with PCAP library and socket programming. Experiment
results show that our TCV stage can handle an average of
27690 handshakes per second.

B. Data-driven Evaluation

We further evaluate the performance of SDNShield with
simulations that incorporate real packet traces to create a
realistic baseline traffic pattern. Besides the baseline scenario
in which no defense is implemented, we compare our scheme
in particular to adaptations of two major related works: (1)
Scotch [6] and (2) Avant-Guard [9].

Simulation Setup: We use a single OpenFlow switch topology
in the simulator. Network links are modeled as fixed propa-
gation delays (1 millisecond each) and processing units, e.g.

switch’s OFA and OpenFlow controller’s routing application,
are modeled as m/m/1 queues. We draw the parameters from
the measurements from Section III-A as well as prototype
results from Section IV-A.

Data set and SD Stage parameters: We choose WIDE-
MAWI Working Group’s DITL 2009 data set [22] as the basis
of our data-driven evaluation. DITL 2009 is a set of packet
trace collected from a transit link of WIDE backbone in Tokyo,
Japan. Its 96-hour duration is sufficiently long to cover daily
periodic pattern of Internet traffic. We conduct our study over a
300-second period starting from April 1, 2009 12:00 pm (Japan
local time), and use traffic from both the immediate previous
time window and exactly one day before as the training data
for nominal profiles. We Extract TCP flows from the packet
traces, and downsample to match our simulation settings. As
a result, there are a total of 93263 legitimate TCP flows over
the 300-second test period, which is 311 flows/sec in average.
These legitimate flows are then mixed with forged TCP flows
with randomly generated source/destination IP addresses and
port numbers, to create SDN-DDoS scenarios.

Accuracy of SD Stage: We define the SD stage accuracy
metrics in Table I, and show the results in Table II. We
set the target workload of the SD stage slightly higher than
the legitimate flow arrival rate, which results in very low
FPR but also higher FNR at low attack intensities (100 and
200 flows/sec). Since the design of SDNShield focuses on
protecting the SDN infrastructure, we allow some forged flows
to be ruled as in-profile as long as the SDN control path is
not overwhelmed.

Assuming that attackers cannot accurately mimic the nor-
mal traffic footprints, on the other hand, we deliberately put the
SD stage to test with a “flat” attack pattern, i.e. the forged flows
are uniform randomly spread over the entire 5-tuple space.
Table II shows that the SD stage can still achieve high accuracy
under such an attack pattern. It is also worth noting that as
the attack intensity increases, the accuracy metrics of the SD
stage improve in general. This is because a more intense SDN-
DDoS attack will lead to more difference between the nominal
and measured profiles, making it easier for the SD stage to
statistically distinguish legitimate flows from forged ones. A
low FPR is significant since it allows more legitimate flows to
be requested via a shorter control path shown in Figure 6, and
installed onto the high-throughput physical switch route.

Performance Evaluation under Varying Attack Intensities:
In this section we discuss SDNShield’s performance under
varying SDN-DDoS attack intensities. Here we compare four
schemes: (1) No protection, in which the flow arrivals are
directly handled by physical switches; (2) Software Switch

scale-up, which is equivalent to is equivalent to Scotch [6]
but without large flow migration. In this scheme, software
switches elastically scale-up inbound and outbound control
plane capacity, but no filtering is performed. (3) SYN cookie,
which is equivalent to Avant-Guard [9] implemented in AMUs.
All flows are verified by the TCV stage, but no SD stage
filtering is performed. (4) SDNShield.

Data-driven Evaluation Results: Figure 9a shows that when
attack intensity increases over 200 flows/sec, the non-protected
SDN network quickly gets overwhelmed and starts to drop
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Fig. 9: Performance evaluation under varying attack intensities: (a) Legitimate flow dropping rate (b) Legitimate flow setup time
(c) Controller response time (d) A closer look into flow setup time between the SYN cookie scheme and SDNShield

legitimate flows. SDNShield does not drop any legitimate flow,
as the AMUs provide extra control plane capacity, and the
two-stage SD+TCV filter stops forged flows from flooding the
control paths.

Figure 9b shows the average setup time of those legitimate
flows accepted by the network, under varying attack intensities,
for the four schemes. Here we define the flow setup time as
the time from the sending of SYN packet by the TCP client
(Host A in Figure 5), until the handshake process completes
and data packets start to transfer. As was mentioned above,
the non-protected case gets quickly overwhelmed and starts to
drop legitimate flows. For those legitimate flows accepted by
the SDN network, the flow setup time tops out due to the long
inbound queuing delay at the edge switch’s OFA. SDNShield,
software switch scale-up and SYN cookie are highly resilient
to increasing attack intensity. However, for the software switch
scale-up case, there is a significant increase in flow setup time
when attack intensity is over 9000 flows/sec. This is due to
that unfiltered workload causes congestion at the centralized
controller, as is shown in Figure 9c.

Figure 9d takes a closer look into the comparison be-
tween SDNShield and the SYN cookie scheme. The SYN
cookie scheme constantly yields longer flow setup time than
SDNShield, as it requires two rounds of handshakes to es-
tablish a TCP connection. Also, the flow setup time slightly

increases as the attack intensifies, due to congestion at the TCV
stage module of the AMU. It is worth noting that although
the TCV stage introduces considerable delay to flow setup,
in SDNShield, as shown in Table II, most of the legitimate
flows can be identified by the SD stage and requested via the
faster path (Step 3 in Figure 6); only false-positive TCP flows
(less than 1% overall as shown in Table II) are forwarded to
the TCV stage. Therefore, the SDNShield schemes still enjoys
lower flow setup delay in average.

V. RELATED WORKS

Security has been an increasingly important area of re-
search of SDN. Kreutz et al. analyzed the vulnerabilities of
SDN, highlighting DDoS as a critical threat to SDN [8]. There
have been many works investigating robustness and scalability
issues of SDN infrastructure. On the controller side, [23]
used multi-thread techniques to boost up processing capacity.
Difane [24] improves SDN scalability by devolving workload
from centralized controller to auxiliary devices. On the switch
side, Tango [8] analyzed commodity switch performance and
diversity.

The threat of DDoS on SDN control plane have been
recently addressed by [6] and [9]. Scotch [6] leverages the
scalability of OVS-based overlay network to accommodate
more flow request transactions. Avant-guard [9] uses SYN
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cookie/proxy technique to block out forged TCP flows from
depleting SDN resources. SDNShield takes a combined de-
fense approach, and is further inspired by previous works on
traditional DDoS defense. Particularly, SDNShield bases its
first stage defense mechanism on statistical filtering, such as
PacketScore [20], [21], and the second stage on TCP SYN
cookie/proxy techniques [11]–[13]. Our defense architecture
also draws inspiration from the two-stage, coordinated defense
architecture in LADS [25].

VI. CONCLUSION AND FUTURE WORK

In this article, we propose SDNShield, a NFV-based
defense framework against SDN-DDoS attacks. SDNShield
leverages the scalability and ease of customization of software
switches to protect the SDN network edges, and incorporates a
two-stage filtering scheme to protect the centralized controller.
Most of the legitimate flows are identified early in the SD
stage, requested via the usual SDN control path, and installed
to physical switch routes for best throughput and minimum
overhead on flow setup time. As the SD stage inevitably
generates false positive flows, we add the TCV stage to double-
check these flows and ensure all legitimate flows are accepted
by the network. Evaluation results show that SDNShield
achieves high resilience to increasing attack intensities.

We shall extend our work in the following directions: (1)
Prototype SDNShield on advanced processing platforms, such
as Data Plane Development Kit (DPDK) [26], which achieves
higher throughput and low latency. (2) Develop a control
scheme to coordinate the virtualized AMUs across the net-
work, for swift defense and dynamic scalability. (3) Measure
extensively the performance of switch software layers and the
central controller, to provide more accurate characterization
and models.
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