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ABSTRACT
Emerging commercial live content broadcasting platforms are fac-
ing great challenges to accommodate large scale dynamic viewer
populations. Existing solutions constantly suffer from balancing the
cost of deploying at the edge close to the viewers and the quality of
content delivery. We propose LiveJack, a novel network service to
allow CDN servers to seamlessly leverage ISP edge cloud resources.
LiveJack can elastically scale the serving capacity of CDN servers
by integrating Virtual Media Functions (VMF) in the edge cloud
to accommodate flash crowds for very popular contents. LiveJack
introduces minor application layer changes for streaming service
providers and is completely transparent to end users. We have
prototyped LiveJack in both LAN and WAN environments. Evalua-
tions demonstrate that LiveJack can increase CDN server capacity
by more than six times, and can effectively accommodate highly
dynamic workloads with an improved service quality.

1 INTRODUCTION
Modern content delivery systems for live broadcasting are facing
unprecedented challenges. On the one hand, more traditional TV
programs, such as nightly news and sports games, are now streamed
online at a higher quality. Popular programs can easily attract
millions of viewers [10, 28]. On the other hand, the emerging User-
Generated Live Content (UGLC) are gaining tremendous popularity
through various streaming platforms (such as Twitch, Facebook
Live, and Youtube Live, etc.) and at the same time bringing new
challenges. Any randomUGLCmay suddenly become viral on social
media as the result of social cascading and recommender promotion,
and cause a flash crowd of viewers to watch the same content within
a few minutes (see Section 2.1 for details). Without knowledge of
geographic and network distributions of the viewers, it is difficult to
provision streaming resources to accommodate such unpredictable
flash crowds beforehand. Moreover, many live streaming platforms
encourage interactions between content generators and viewers.
For instance, Twitch offers viewers a chat box to send feedbacks
to the broadcasters, while Facebook Live enables viewers to click
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emoji buttons while watching a broadcast. Such interactive features
require UGLC streaming to have the minimized playback lag.

Traditional content delivery network (CDN)-based live broad-
casting systems are incapable of meeting all the new demands.
CDN providers aggregate to one or multiple data centers to take
advantage of the elasticity of Virtual Machine (VM) resources and
the flexibility of routing inside data centers. However, the lack of
edge presence makes the streaming vulnerable to long transmission
delay and congestion fluctuations in Wide Area Networks (WAN).
Only large content and CDN providers can afford to negotiate with
ISPs to place compute resources at the ISP edge to improve QoE
for regional customers [6, 15]. Nevertheless, due to the reduced
degree of multiplexing at the network edge, provisioning enough
edge presence to meet performance guarantee can be very cost-
inefficient [22]. Measurement studies [29, 36, 40] have revealed that
the streaming experience of leading live streaming platforms like
YouTube and Twitch can suffer from occasional service interruption
and unstable video quality.

Recently, major ISPs and cloud vendors have been investing
heavily on developing integrated edge clouds. These edge clouds
are deployed close to users and can provision virtual edge resources
elastically from a centralized platform. For instance, AT&T has de-
ployed 105 edge clouds at their provider edge sites in 2016 [1]. Cloud
vendors and CDNs have proposed various methods to enhance
the coordination between their data centers and edge resources
[16, 24, 27]. This motivates us to rethink the design of live content
delivery. Can ISP provide virtualized edge resources to assist CDNs
to better serve flash crowds?

In this paper, we propose LiveJack, a transparent network ser-
vice that enables CDN to seamlessly integrate edge clouds for live
broadcast (Figure 1). The main idea is to elastically scale the serving
capacity of CDN servers by dynamically deploying Virtual Media



Functions (VMFs) at edge clouds. Compared with other live broad-
casting solutions, LiveJack offers the following distinct features.
Centralized Infrastructure Scaling. Instead of pre-provisioning
VMFs, LiveJack has a centralized controller to deploy VMFs on de-
mand and optimize delivery paths in real-time with the global view
of content sources, viewer groups, network, and cloud resources.
On-the-fly Session Migration. LiveJack employs layer-4 session
hijacking techniques to transparently migrate streaming sessions
to VMFs on-the-fly. Upon arrival, a new user can be immediately
served by a CDN server and later seamlessly migrated to retrieve
contents from a VMF. On-the-fly session migration enables all
user sessions to be flexibly moved around to achieve better load
balancing and VMF consolidation, which significantly improves
LiveJack’s response to flash crowds.
Dynamic Service Chaining. Recursive layer-4 session hijacking
also enables service chaining of VMFs: a VMF can act as an end
user and retrieve contents from another VMF. Dynamic multi-hop
service chaining enables LiveJack to scale fast while maintaining
efficient delivery paths among VMFs when facing a flash crowd.
Transparency and Compatibility. LiveJack is a layer-4 service
and can support any layer-7 streaming applications. Applying Live-
Jack requires little modification on the server side and no modifica-
tion on the client side. LiveJack is also compatible with any CDN
optimization techniques.
The contributions of this paper are four-fold: 1) We character-
ize large scale user traffic dynamics in commercial live streaming
services (§2.1). 2) We introduce LiveJack, a novel network service
that integrates CDNs and edge clouds for elastic and agile live
content broadcasts (§3). 3) We implement VMF as a general Linux
kernel component and develop a light-weight signaling protocol for
streaming synchronization (§4). 4) We test the LiveJack prototype
system in both LAN and WAN environments. Experimental results
show great potential of LiveJack for commercial deployments (§5).

2 MOTIVATION AND RELATEDWORK
2.1 User Dynamics in Emerging Commercial

Live Broadcasting Services
We have conducted a trace-driven study to profile the user dynam-
ics of Facebook-Live and Twitch, both of which provide APIs to
collect the viewer and channel statistics. We have collected traces
consecutively from both Facebook-Live and Twitch for more than
two months. Among all the channels, we identify the flash crowd
channels based on two criteria: 1) the peak number of concur-
rent viewers; and 2) the peak viewer growth rate within a certain
time window. In other words, a flash crowd channel is a mega-
event [27, 40] with massive user arrivals in a short time period.
For Facebook-live, we classify flash crowd channels as those with
a peak viewer number of more than 20k and at least 10k viewer
growth within 20min. For Twitch, flash crowd channels are defined
as those with a peak viewer number of more than 100k and at least
50k viewer growth within 20min. The thresholds are determined
by classifying the peak growth rates of all the channels. We do not
rule out other threshold settings for data analysis, which lead to
similar observations without loss of generality.

First, we analyze the evolution of viewer population in Figure
2a and Figure 2b for Facebook-live and Twitch, respectively. The
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Figure 2: Total viewer time series and flash crowd channels
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blue line depicts the total viewers in the system while the red line
shows the viewers for the flash crowd channel with most viewers
emerging at different time instants. The results reveal several inter-
esting observations: first, for both systems, flash crowd channels
significantly increase the total number of viewers in the system.
Compared with the peak number of viewers in an average day with-
out flash crowds, the flash crowds at 2016 Election Day increased
the peak number by approximately ten times. When a flash crowd
emerges, it tends to attract a lot more viewers than the average
channels: for Facebook-live, the flash crowd channel by Viral USA
attracted 86.4% of viewers of the entire system; for Twitch, the flash
crowd channel for eSport attracts around 30% of the viewers of
the system. Secondly, flash crowds can be relatively frequent. Dur-
ing our trace collection window, we have captured 154 flash crowd
events for Facebook-live and 53 for Twitch with the aforementioned
criteria. Thirdly, the events associated with the flash crowds can be
either scheduled or random. We analyze the contextual information
of the captured flash crowds. Besides the scheduled events, such as
presidential elections and game competitions, we also noticed some
sporadic accidental flash crowd events. For instance, on Oct. 26,
2016, a fake viral post of “Live NASA Space Walk" in Facebook-live
by Viral USA accidentally generated a major flash crowd for the
system. Even for the scheduled events, the actual viewer popula-
tion evolution of flash crowd channels could differ from each other
significantly.



Next we characterize how fast viewers enter flash crowd chan-
nels. Figure 3 shows the minimum time taken to reach a certain user
growth for different channels in Facebook-Live and Twitch. In both
platforms, the viewer population of some channels can reach a very
high number within a very short period. For instance, 39.61% of
the Facebook-Live channels can gather at least 20k viewers within
three minutes. For Twitch, over 40% channels can grow more than
100k viewers within 30 minutes. By contrast, provisioning new
resources (e.g. booting up virtual machines, changes routing and
populate contents) can easily take longer than 10min [9].

2.2 Evolution of Live Content Broadcast
Much effort has been made to deliver live broadcast services over
the past decade. In the early days, live content broadcast was built
over IP multicast systems. However, as IP multicast faces practical
deployment and management issues, it is only used in limited sce-
narios such as ISP-oriented IPTV services [11, 13]. During the early
2000, P2P-based live broadcasting systems won popularity to share
video contents among end-user devices [8]. P2P live streaming sys-
tem scales well under dynamic workloads, since each joining user
acts as a reflected content source. However, prior research reported
that P2P live streaming suffers from unstable video quality and
severe playback lags up to minutes mainly due to peer churn and
limited uplink bandwidth [25]. In addition, P2P systems introduce
significant user-side complexities and no longer fit the modern re-
quirment of lightweight client implementation. Even though recent
effort in augmenting P2P with cloud and CDN (e.g., AngelCast [35]),
LiveSky [39]) can effectively reduce the latency and improve the
streaming quality, the P2P nature makes it difficult for these sys-
tems to attract users preferring to watch live streams in a browser
or on mobile devices.

Today, most live broadcasting systems rely on CDN-based ar-
chitectures to deliver live streams globally. By relaying the live
content over one or multiple reflector sites, an overlay multicast
tree is created to pass data from the origin content server to the
edge servers in the regional data centers, which serve viewers di-
rectly through either HTTP or RTMP protocols [3, 22, 27]. Since
the capacity and the egress bandwidth of each regional server can
be very limited [36], most commercial streaming systems rely on
the elasticity of the data center to handle varying traffic [31]. Some
systems can provision just enough server resources to handle daily
traffic and rely on the assistance of other CDN providers in the
case of overflow, while others have to prepare for the worst case to
maintain consistent experience for all viewers [2]. Prior research
studies have also proposed various solutions to improve CDN per-
formance for live broadcasting. For instance, VDN [27] developed
a centralized streaming optimization and a hybrid control plane
to reduce the start-up latency and improve routing choices across
different CDN clusters. Footprint [24] shows the benefits of deliv-
ering streaming services by jointly optimizing the data center to
provide the service, the WAN transport connectivity and the proxy
selection. C3 proposes to improve video quality by helping clients
to select better CDN sites through data-driven analysis[17].

Although the design philosophy and some technical details of
LiveJack shares similarities with these related work, there are key
differences. The scope of LiveJack is not to extend or optimize
CDN, but facilitate the collaboration between CDN and ISP. Such

CDN-ISP collaboration only exists nowadays for large content and
CDN providers who are capable of deploying customized server
hardware to the ISP edge [6, 15, 22]. In academia, NetPaaS [16]
proposes to share ISP information with CDN to optimize user-to-
server assignments and server allocations. Different from these
infrastructure-sharing and information sharing approaches, Live-
Jack demonstrates a new way of collaboration: providing a network
service to allow CDN servers to seamlessly leverage ISP edge re-
sources to handle extreme viewer dynamics.

2.3 Session Hijacking
TCP session hijacking was originally developed as a penetration
technique to take over a connection between the server and the
client to eavesdrop or intervene the connection on behalf of the
server or the client [18]. Recently, with the advance of Network
Function Virtualization (NFV), transparent TCP proxies witness
growing popularity. Through session hijacking, transparent proxies
can perform various functionalities without disrupting an existing
TCP connection or any application running on it. Various trans-
parent HTTP proxies such as Squid can leverage transparent TCP
proxying to deliver cached content to clients on behalf of the server
behind an established HTTP session [32]. [21, 23] propose split TCP
to improve the performance of mobile TCP connections. [34, 38]
leverage session hijacking to accelerate the handshake and TCP
slow start phase with improved handshake and forwarding mecha-
nisms. In this paper, we utilize TCP session hijacking to seamlessly
migrate users to a VMF.

3 SYSTEM DESIGN
3.1 LiveJack Overview
We start with an overview of a LiveJack live broadcasting scenario
consisting of a streaming server, a logically centralized LiveJack
controller, distributed VMFs, and multiple viewers that are request-
ing the same live content from the server. Figure 4 illustrates the
architecture and how different modules interact with each other.

In LiveJack, the streaming server can serve each viewer directly
via an individual transport session. We define the term transport
session as the transport layer connection throughwhich all session-
dependent signaling messages and live content data are delivered.
For most popular live streaming protocols (i.e., RTMP, HLS), the
transport session refers to an established TCP connection1. Upon
each viewer access, the server sends the central controller a re-
quest, which contains the detailed transport information of the
established session (address and port of both server and viewer)
along with the ID of the live content requested by the viewer. If the
controller assigns a VMF in response to the request, the streaming
server sets up a footprint session with the assigned VMF if such a
footprint session does not exist. We define footprint session as a
special transport session between a streaming server and a VMF.
Once a footprint session is established, the streaming server only
sends one copy of live content data to the footprint session, and
only sends session-dependent signaling messages to corresponding
transport sessions. A VMF is essentially a “hijacker” middle-box
function for the transport sessions traversing through it. It can sniff
and hijack any transport session (explained later in Section §4).

1Livejack can be easily modified to serve UDP based streaming protocols such as
RTP/RTCP
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After the footprint session is established, a VMF is responsible for
replicating and injecting content data from the footprint session
to the hijacked transport sessions. From the viewer’s perspective,
it has no knowledge of the existence of any VMFs and receives all
the signaling and data packets from the transport session set up
with the server.

The LiveJack controller has three primary responsibilities.
First, the controller tracks the evolving viewer demands, service
quality, and resource availability, and interacts with the edge clouds
to strategically deploy VMFs at optimized locations. Second, given
the information in the server request, the controller determines
which VMF to be assigned to assist each transport session. Last,
when a VMF is ready for streaming, the controller configures the
network to chain the transport session through the assigned VMF.

Note that: 1) a footprint session is also a TCP connection. The
server can treat it the same way as a transport session and request
the controller to assign a new VMF. Therefore, each VMF thinks it
is talking directly to the server while the data is actually injected
by an upstream VMF. Such a design enables LiveJack to construct
an efficient footprint session tree by dynamically chaining VMFs
together and significantly reduce the overall network bandwidth
usage. 2) AVMF can be assigned to any transport session at any time.
Therefore, after making the request to the controller, the server
shall start streaming content data to the viewer directly through the
established transport session immediately, and migrate the session
on-the-fly to a VMF later as instructed by the controller. 3) the
streaming server can detect a VMF failure or sessions experiencing
poor performance through the signalingmessages received from the
transport sessions2. When such an event is detected, the streaming
server terminates the affected transport sessions. Typically, in client
implementation, the disconnected viewers would re-initiate new
sessions with the server. The server has the option to serve them
directly or through other available VMFs. VMFs affected by an
upstream VMF failure are treated alike.

3.2 LiveJack Workflow
We now present an example in Figure 4 to explain how LiveJack
works in detail. Initially, assume there is no viewer or VMF. The
first viewer V1 initiates a query for a live content C available at
the stream server S . A transport session S-V1 between S and V1 is
established using an application layer protocol (step 1 ). S sends a
register_viewer request to the controller carrying the transport

2Failure handling can also be done by the controller to simplify streaming server in
large-scale deployment

S: Seq 101, ACK 201,   Len 10, Win 10000

V: Seq 201, ACK 111,   Len 0, Win 11000

VMF

S’: Seq 111, ACK 201, 
Len 10, Win 10010

V: Seq 201, ACK 121, 
Len 0, Win 11010

S: Seq 111, ACK 201, 
Len 10, Win 10010

V’: Seq 201, ACK 121, 
Len 0, Win 11010

S’: Seq 121, ACK 201, 
Len 10, Win 10020

V: Seq 201, ACK 131, 
Len 0, Win 11010

VS
Content data from 
footprint session

Relay payload of 
signal messages

S’V’

S’ Inject 
Content data.

Two sockets V’ and 
S’ are generated at 
VMF to spoof the 
sockets at V and S

t

Transport Session

Figure 5: VMF session hijacking.

information of S-V1 and the content ID for C (step 2 ). Assuming
the controller decides to assign VMF1 for this session, the controller
prepares VMF1 for streaming (step 3 ) by: a) routing the traffic of
S-V1 through VMF1; b) providing the transport information of S-V1
to VMF1 for hijacking; and c) informing VMF1 to expect content C
from S . A prepare call from the controller to the helper VMF carries
three arguments: the content ID, the targeting transport session,
and the helper footprint session. Once VMF1 is ready, the controller
notifies S that VMF1 is assigned to session S-V1. Upon notification,
S sets up the footprint session S-VMF1 and starts sending content
through S-VMF1 (step 4 ). VMF1 injects the received data to session
S-V1 (step 5 ). Note that S does not block to wait for VMF1 to get
ready. After making the register_viewer request, S may start
streaming with V1 using session S-V1. S later switches to sending
only signaling packets through S-V1 when the footprint session
S-VMF1 is ready.

Similarly, when the second viewerV2 queries the same contentC ,
the transport session S-V2 is established first (step 6 ), followed by
the register_viewer request to the controller (step 7 ). Assume
VMF1 is selected and prepared to assist V2 as well (step 8 ). In this
case, since the footprint session S-VMF1 is already active, VMF1
can replicate the received content data and inject to both S-V1
and S-V2 (step 9 ). Assume later a third viewer V3 is assigned to
a different VMF2 (step 12 ) after following similar steps ( 10 11 ).
When setting up the footprint session S-VMF2, S treats VMF2 the
sameway as a normal viewer, and send a register_viewer request
to the controller (step 13 ). Assume the controller assigns VMF1 for
help. In this case, data from the footprint session S-VMF1 is directly
injected to the new footprint S-VMF2. Subsequently, VMF2 inject
the data again into the session S-V3 (steps 14 15 16 ).

4 IMPLEMENTATION
We implemented a prototype system of LiveJack for demonstration
and evaluation. This section discusses the implementation details.

Development Environment. In our prototype system, the con-
troller communicates with VMFs and streaming servers through
RPC calls. VMFs are deployed on individual virtual machines (VMs).
The session hijacking and content injection logic are implemented
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using Netfilter and IPtables [33], which delegate packet process-
ing to a user-space LiveJack-VMF program. We choose the RTMP-
enabled Nginx web server as the streaming server. The RTMP pro-
tocol is currently a popular choice among live content providers
such as Twitch and Facebook Live. We need to attach a lightweight
LiveJack streaming plugin to the Nginx source code to subscribe to
LiveJack services on the server side. All viewers are off-the-shelf
video players that support RTMP streaming.

Session Chaining and Hijacking. LiveJack can leverage differ-
ent techniques to steer any transport session through an assigned
VMF. LiveJack controller managed by ISP can boot VMFs at the ISP
provider edge (PEs) as PE components similar to a virtual firewall.
When a transport session traverses the PE to reach the backbone
network, the VMF has the chance to serve the session as a middle-
box. Alternatively, if no VMF is available on the path, the ISP can
configure IP tunnels or interact with SDNs controller to set up paths
between any anchor points along the default routes and the VMFs.
By dynamically mapping sessions to particular tunnels or paths, live
sessions can be routed through the assigned VMFs. Various prior
research on middle-box chaining serves our purpose [12, 14, 30, 37],
on which we will not elaborate. In our prototype system as a proof-
of-concept, we use Ryu OpenFlow [4] to install exact rules to steer
the path between the streaming server and VMFs for each session.

We adapt “session hijacking" [18] to inject content packets re-
ceived from the footprint session into the transport sessions, which
are all TCP connections in our prototype system. Figure 5 shows
one example of hijacking a transport session between S and V . We
implement Netfilter hooks in a kernel module which can access any

packet chained through VMF. A user-space program listens to RPC
calls from LiveJack controller. Upon receiving prepare call, the pro-
gram informs the kernel module to transparently sniff the packets
of the transport session that needs to be hijacked, where the TCP
session states such as SEQ/ACK numbers and timestamps can be
tracked. At time t , VMF spoofs two TCP sockets, which breaks the
original transport session into two subsessions3. The TCP socket
S ′ at the VMF facing the viewer then spoofs the socket S , while V ′
facing the server spoofs socket V . Through the spoofed S ′, VMF
can then inject content data received from the footprint session
on behalf of the streaming server. The payloads of the signaling
packets between S and V are relayed between V ′ and S ′.

After hijacking, VMF applies constant offsets to SEQ/ACK num-
bers, modifies source/destination addresses and set local timestamps
to proxy packets from the original transport session to the two sub-
sessions and vice versa. Therefore, VMF only maintains in the order
of tens of constants for each session with no time-varying states.
The two subsessions work independently to handle transport func-
tions such as congestion control and retransmission.

Control Packets for Video Synchronization. We notice a video
synchronization problem in our implementation. In the previous
workflow example (Figure 4), V2 joins streaming and expects to
receive video injected by VMF1 at step 9 . However, since VMF1
has already started streaming with S andV1 at the time, there should
be a mechanism to inform VMF1: of all the live video that VMF1
is receiving from S , from which exact packet should VMF1 start
to inject into the session S-V2. Failing to pinpoint the start point
will cause V2 to miss the first I-frame packet, which is required to
decode subsequent frames predicted from the I-frame.

To address this problem, we propose to send control packets
in both the transport session and the footprint session for video
synchronization. Figure 6 illustrates how this control method works
step-by-step. The control packet added to the footprint session (S-
VMF1) marks the first video packet needed by V2 and the control
packet added to the transport session (S-V2) indicates when VMF1
can start injecting video. Both control packets will be intercepted
and dropped by the VMF1 so that V2 is not aware of them.

Although the control packets are currently designed for video
synchronization, we want to mention that such mechanism can be
extended to serve general session control functionalities. Compared
to the RPC calls that has the LiveJack controller in the loop, the in-
band control packets are more responsive and are in sync with the
transport session. By sending control packets with different formats,
the server may flexibly offload various application functionalities
to its assigned VMFs (discussed later in Section §6).
5 EVALUATION
5.1 LAN Evaluation
Topology andComponents:Wehave implemented a LAN testbed
with four DELL R730 servers. Figure 7 shows the logical topology
of the testbed. We deploy one streaming server in the network.
There are two tiers of VM-based relay nodes in the testbed, each
of which can be configured as a pure forwarding hop, a proxy
server, or a VMF in different test scenarios. Viewers are generated

3The kernel module spoofs SYN-ACKs fromV to S ′ and S toV ′ to fake the handshake
for S ′ and V ′, respectively.
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at Docker containers with different IPs or TCP ports. Two Open
vSwitchs (OVS) connect different tiers. Through the Ryu OpenFlow
controller [4], various routes are configured between the two tiers.
There is an additional VM configured as the LiveJack controller or
a DNS server.

Test Scenarios: The testbed can be configured into three test
scenarios to compare LiveJack against different solutions:
• Single Streaming Server: Each relay node is a forwarding

hop. This scenario serves as a benchmark of that viewers are
directly served by the original content servers and/or CDN
servers.

• DNS-based Proxying:A fixed number of Nginx-RTMP proxy
servers are deployed in the relay nodes. A dynamic DNS server
is configured to load balance viewers to different proxy servers.
We configure a five-minute delay to emulate the real world la-
tency introduced by populating DNS updates[24, 27]. A viewer
cannot switch between proxy servers while it is being served.

• LiveJack: Viewers are initially served by the streaming server
directly. When the live content becomes available on the VMF,
OpenFlow controller routes the session through the VMF
which then hijacks the session and seamlessly injects content
into the session on behalf of the server. VMFs can be dynami-
cally booted or shutdown based on the user workloads.

Metrics:When certain link becomes congested or certain VM
gets overloaded, viewers experience high TCP retransmission rate
and high jitter in received RTMP frames. Therefore, we use TCP
goodput and average frame jitter as the metrics to evaluate QoE
of viewers. Frame jitter is defined as the standard deviation of the
inter-arrival time of frames. We randomly select some viewers and
implement them using FFprobe to monitor per-frame statistics. All
the other viewers are implemented using RTMPdump.

SystemCapacity Stress Test. In this test, we compare the max-
imum system capacities of LiveJack with VMFs enabled at all eight
VMs and that of the single streaming server scenario. Each virtual
link is rate limited to 200Mbps according to the typical VM network
bandwidth in commercial clouds [5]. We generate 20 channels with
the same 480p 600kbps Big Buck Bunny sample video. Viewers are
randomly generated at different containers in this test. Figure 8
and Figure 9 show the results for single streaming server and eight-
VMF LiveJack, respectively. A single streaming server can support
only up to 250 viewers. Beyond 250 viewers the video frame jitter
increases significantly and the goodput decreases, leading to an

unstable system. By contrast, eight-VMF LiveJack supports up to
1,620 viewers with sub-100ms frame jitter and no observable good-
put degradation. Beyond 1,620 viewers, the jitter exceeds 100ms
due to the congestions in VMF egress bandwidth.

Individual VMF Performance. VMF can support more view-
ers with a higher egress bandwidth. In this test, we increase the
egress bandwidth of a VMF to 3.3Gbps by accelerating OVS with
DPDK [19].This setup mimics the real-world edge clouds that are
close to viewers and have a high user-facing bandwidth. Figure
10a shows the goodput and frame jitter as we increase up to 500
viewers served by a single VMF with one 480p channel. The results
show that a VMF can smoothly support all the viewers with 83ms
frame jitter and no observable loss of video rate. At the 500-viewer
workload, we further test two kinds of video sources (i.e. Big Buck
Bunny and Elephant Dream) with different resolutions and bitrates.
The source bitrates for 360p, 480p, 720p and 1080p are 300kbps,
600kbps, 1200kbps and 2400kbps, respectively. The results in Figure
10b show that a single VMF can safely support all 500 viewers with
moderate bitrate for 360p/480p/720p video sources. Some viewers
experience a higher rate variance for 1080p video while the average
is moderate.

Adaptation to User Dynamics. In this test, we evaluate Live-
Jack’s response to dynamic user demands. We compare LiveJack
against DNS-based Proxying systems. We scale a 100min user trace
collected from Facebook-Live to generate the workload. The stream-
ing server cyclically plays a 480p Big Buck Bunny sample video with
a length of 5min 30sec. Based on the geo-locations of the viewers in
the real traces, each viewer is mapped to one of the containers. Since
the trace does not contain the service time of individual viewers,
the service time is configured to be exponentially distributed with
a mean of 10min. All the links are configured to 200Mbps. For the
DNS scenario, we create a two-proxy-server (Proxy-2) system and
an over-provisioned four-proxy-server (Proxy-4) system. Every five
minutes, the mapping of viewers to proxy servers are re-calculated
according to the load of each proxy server in the previous five-min
slot. The updated user mapping will be applied in the next time
slot. LiveJack starts with one VMF serving up to 350 concurrent
viewers. For every 350 more viewers, a new VMF is booted. For a
fair comparison, LiveJack can boot up to four VMFs. A viewer is
always chained and served by the VMF with the least load when it
accesses the service.

Figure 11 shows the number of viewers, the average frame jitter
and the goodput of LiveJack, Proxy-2, and Proxy-4 over time. Both
Proxy-2 and Proxy-4 experience high frame jitter since the DNS-
based mapping cannot keep up with the user dynamics. Even at
lower workloads during 0-20min, Proxy-2 and Proxy-4 experience
sporadic jitter bursts due to unbalanced user workloads. With over-
provisioned proxy servers, Proxy-4 performs slightly better than
Proxy-2 with fewer jitter bursts. However, Proxy-4’s responses to
flash crowds at 18min, 52min and 74min are still bad. For compari-
son, LiveJack maintains a low frame jitter and a smooth goodput
throughout the test. With the on-the-fly session migration, VMFs
achieve close to the optimal load balancing. The frame jitter in-
creases by a few tens of milliseconds at 52min and 74min when
viewers are served by the streaming server before new VMFs be-
come ready. The result also shows that LiveJack can elastically scale
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Figure 8: Single Streaming Server Capacity Benchmark
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Figure 9: Eight-VMF LiveJack Capacity Benchmark
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Figure 11: Response to user dynamics for LiveJack and DNS-based Proxying

and shrink VMFs in response to user dynamics. Note that VMFs are
not shut down immediately as the workload shrinks (e.g. at 32min
and 50min.) until all active viewers served by the VMFs fade out4.

5.2 WAN Evaluation
To demonstrate LiveJack’s performance in real-world wide area
networks, we deploy a small-scale LiveJack prototype in GENI
network. The WAN testbed includes a streaming server, multiple
viewers, two VMFs, and the LiveJack controller deployed across
four federal states as shown in Figure 12a. Two data paths for live
content delivery are configured, where the server machine “srv" at
UCLA broadcasts to viewers at “usr1" and “usr2" in Boston GPO
via “relay1" at Wisconsin or “relay2" at GaTech. The end-to-end
bandwidth from “srv" to “usr1" or “usr2" through the two data paths
is only around 10.5Mbps. The bandwidth from “vmf1/2" to “usr1/2"
less than 49.3Mbps. To accommodate the capacity, we generate only
up to a total of 20 viewers at “usr1/2" and stream only one 256kbps
sample video from “srv."

Service Latency.We first measure the service latency of both
LiveJack and the proxy server solutions. We evaluate two kinds of
service latency: the average end-to-end delivery lag between when
a frame is sent by the server and when it is received at a viewer; the
start-up latency between a viewer requests the content and the first
video frame is received. We generate a total of 20 viewers at “usr1"
4To better show the elasticity of LiveJack, each viewer in our test is configured to leave
in 20min. Theoretically, LiveJack can support a seamless consolidation of sessions
from excessive VMFs, which is similar to migrating session from the streaming server
to a VMF. The implementation of user consolidation in LiveJack is left for future work.

Table 1: Start-up Latency and Delivery Lag

Setup Itemize Min/Avg/Max(ms)

S(Server)-V(Viewers)
E2E delivery lag 43.52/60.89/98.70
Total start-up 795/1022/2072

S-VMF-V

E2E delivery lag 57.36/62.82/107.14
E2E delay 53.35/54.84/69.20
Total start-up 811/1080/1671
RTMP handshake 680/850/1565
RPC calls 65/176/260
Session hijacking 143/257/698

S-S-V
E2E delivery lag 84/86.67/340.17
E2E delay 53.24/56.40/77.19
Total start-up 343/605/2017

and “usr2" in the GPO site in Boston. Ten of the viewers at “cli1" is
served by VMF at "relay1" and the other ten at "cli2" are served by
"relay2". For comparison, we also test the single-streaming-server
scenario (i.e. all viewers are served by the server directly) and the
proxying scenario (i.e. “relay1" and “relay2" configured as proxy
servers). The average start-up latency, delivery lags and breakdown
components of three scenarios are listed in Table 1.

The result reveals that LiveJack only introduces 1.93ms additional
delivery lag compared to directly serving clients from the server.
Most of the delivery lag is contributed by the end-to-end delay
(E2E delay) from the west coast to the east coast. This greatly
outperforms proxy-based solution which introduces 25.78ms for
a single proxy relay. Since proxy server runs at the application
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Figure 12: WAN evaluation of LiveJack

layer and implements streaming protocol logic, the lag is higher
than VMF which purely duplicates and injects frames to viewers.
Regarding start-up latency, LiveJack is comparable to the single-
streaming-server setup. Most start-up latency is contributed by
RTMP session negotiation, while the add-on logics of LiveJack
such as RPC calls or session hijacking add little to the total start-
up latency. The proxy-based solution enjoys the fastest start-up
latency because the session negotiation is between the viewers
and the proxy in their proximity. In practice, LiveJack will work
with CDN streaming servers in edge clouds that are much closer to
viewers than our current WAN setup, therefore, will achieve much
shorter start-up latency. Meanwhile, the worst-case start-up latency
of proxy-based-solution is much longer than LiveJack. When the
content is not yet available at the proxy, it requires extra time to
stream from the origin server and the viewers can be blocked before
the contents are ready. In contrast, LiveJack does not block service
even when VMFs are not yet ready.

VMF failover. In the second test we demonstrate how LiveJack
reacts to VMF failover. Initially, ten viewers are served by a VMF at
“relay1" and transport sessions traverse through “srv-s1-relay1-s2-
cli1". At 20 sec, we shutdown the VMF at “relay1". Since viewers
are not aware of VMFs, the affected viewers immediately try to
re-connect and are then served by “srv" directly. The LiveJack con-
troller detects that the VMF at “relay1" goes down, and controls the
switches “s1" and “s2" to chain the user sessions through “vmf2". At
40sec, the VMF at “relay2" becomes ready, and seamlessly hijacks
the sessions and serves the viewer on behalf of the server. The
egress bandwidth of the server and VMFs are show in Figure 12b.

This result demonstrates that LiveJack is able to swiftly failover
between VMFs in case of VMF failure or regional bandwidth con-
gestion for certain viewers. The average down time between VMF
at “relay1" goes down and all ten viewers being reconnected to the
server is 1,436 ms, which is mostly contributed by re-negotiating
RTMP channels. The handover from server to VMF at “relay2" in-
troduces no down time or TCP reconnect. Therefore, LiveJack out-
performs DNS or redirection-based solutions in case of site failures,
which takes five min or more to populate user mapping. Although
the failover in current LiveJack implementation is not as seamless
as P2P solutions, we consider VMFs to be relatively reliable server-
based entities, which do not introduce as many failures/churns
as in P2P systems [25]. Meanwhile, LiveJack’s robustness against
VMF failures can be further enhanced by higher level client-side
application solutions, such as buffering or multi-homing [7].

6 DISCUSSION
Content Encryption - Modern content services are generally en-
crypted from service provider to end users. In LiveJack, we assume
content provider owns or share secure domain with the VMFs. As
part of our ongoing work, we are implementing transport layer
security (TLS) in VMF for content encryption. By extending the use
of control packets, a streaming server can populate the negotiated
key information to designated VMFs who encrypt user data. In this
way, LiveJack provides content encryption as a service for CDN,
which scales with VMFs to reduce the computation complexity of
streaming servers.

DASH Support - Although we implement the system with
RTMP protocol, the LiveJack framework can support HTTP-based
streaming protocols. Since HTTP is pull-based, VMF needs to be
adapted to recognize and serve the pull requests for contents from
the clients. LiveJack can also support adaptive streaming. The
streaming servers can simultaneously stream multiple bitrates to a
same VMF. By extending the use of control packets, a server can
notify VMFs to select bitrates for users. DASH support for LiveJack
is listed as our on-going work.

VMF Placement and Session Mapping - The centralized con-
trol logic is highly simplified in current LiveJack implementation.
Prior research in data center networking [20, 26] indicates that
carefully engineering the placement of VMFs can effectively reduce
network traffic and provide better streaming quality to viewers.
Optimized deployment of VMFs may depend on the geo-locations
of the streaming servers, the clouds and the viewers, the network
topology and utilization, available cloud resources. Furthermore,
we have noticed that the mapping from user requests to deployed
VMFs affect the service quality. Joint optimization of VMF place-
ment, session mapping, and fine-grain traffic engineering is also
part of our ongoing work.

7 CONCLUSION
In this paper, we proposed a novel transport layer live content
broadcasting system named LiveJack. LiveJack leverages edge cloud
resources to create virtual media functions (VMFs) on demand.
Through transparent “session hijacking" techniques, LiveJack en-
ables live content delivery with high scalability, bandwidth effi-
ciency, and flexible service options. Preliminary prototyping and
evaluation in both LAN and WAN demonstrated that LiveJack can
accommodate extreme user dynamics, increase the number of view-
ers served by streaming servers, react responsively to failures while
maintaining very small latency overheads to the overall service.



REFERENCES
[1] 2016. AT&T Integrated Cloud to Include 105 Data Cen-

ters by Years End. https://www.sdxcentral.com/articles/news/
att-integrated-cloud-count-100-data-centers-year-end/2016/04/. (2016).

[2] 2016. Justin.tv’s Live Video Broadcasting Architecture. http://goo.gl/Q9c1KK.
(2016).

[3] 2016. Twitch & Justin.tv Ingest Servers. https://bashtech.net/twitch/ingest.php.
(2016).

[4] 2017. Ryu SDN framework. https://osrg.github.io/ryu/. (2017).
[5] Amazon AWS. 2017. Amazon EC2 Instance Configuration. http://docs.aws.

amazon.com/AWSEC2/latest/UserGuide/ebs-ec2-config.html. (2017).
[6] Mike Axelrod. 2008. The Value of Content Distribution Networks and Google

Global Cache. https://www.isoc.org/isoc/conferences/inet/08/docs/inet2008_
kiagri.pdf. (2008).

[7] Suman Banerjee, Seungjoon Lee, Ryan Braud, Bobby Bhattacharjee, and Aravind
Srinivasan. 2004. Scalable resilient media streaming. In Proceedings of the 14th
international workshop on Network and operating systems support for digital audio
and video. ACM, 4–9.

[8] Salman A Baset and Henning Schulzrinne. 2004. An Analysis of the Skype
Peer-to-peer Internet Telephony Protocol. arXiv preprint cs/0412017 (2004).

[9] Mark Berman, Jeffrey S Chase, Lawrence Landweber, Akihiro Nakao, Max Ott,
Dipankar Raychaudhuri, Robert Ricci, and Ivan Seskar. 2014. GENI: A federated
testbed for innovative network experiments. Computer Networks 61 (2014), 5–23.

[10] YouTube Official Blog. 2012. Mission complete: Red Bull Stratos
lands safely back on Earth. https://youtube.googleblog.com/2012/10/
mission-complete-red-bull-stratos-lands.html. (2012).

[11] Meeyoung Cha, Pablo Rodriguez, Jon Crowcroft, Sue Moon, and Xavier Ama-
triain. 2008. Watching Television over an IP network. In Proceedings of the 8th
ACM SIGCOMM conference on Internet measurement. ACM, 71–84.

[12] Rafael Fernando Diorio and Varese Salvador Timóteo. 2015. A Platform for
Multimedia Traffic Forwarding in Software Defined Networks. In Proceedings of
the 21st Brazilian Symposium on Multimedia and the Web. ACM, 177–180.

[13] Christophe Diot, Brian Neil Levine, Bryan Lyles, Hassan Kassem, and Doug Balen-
siefen. 2000. Deployment Issues for the IP Multicast Service and Architecture.
IEEE network 14, 1 (2000), 78–88.

[14] Seyed Kaveh Fayazbakhsh, Luis Chiang, Vyas Sekar, Minlan Yu, and Jeffrey C
Mogul. 2014. Enforcing Network-wide Policies in the Presence of Dynamic
Middlebox Actions using Flowtags. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14). 543–546.

[15] Ken Florance. 2008. How Netflix Works With ISPs Around the Globe to Deliver
a Great Viewing Experience. https://goo.gl/joQtjz. (2008).

[16] Benjamin Frank, Ingmar Poese, Yin Lin, Georgios Smaragdakis, Anja Feldmann,
Bruce Maggs, Jannis Rake, Steve Uhlig, and Rick Weber. 2013. Pushing CDN-ISP
Collaboration to the Limit. ACM SIGCOMM Computer Communication Review
43, 3 (2013), 34–44.

[17] Aditya Ganjam, Faisal Siddiqui, Jibin Zhan, Xi Liu, Ion Stoica, Junchen Jiang,
Vyas Sekar, and Hui Zhang. 2015. C3: Internet-scale Control Plane for Video
Quality Optimization. In 12th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 15). 131–144.

[18] B Harris and R Hunt. 1999. TCP/IP Security Threats and Attack Methods. Com-
puter Communications 22, 10 (1999), 885–897.

[19] DPDK Intel. 2014. Data Plane Development Kit. http://dpdk.org. (2014).
[20] Joe Wenjie Jiang, Tian Lan, Sangtae Ha, Minghua Chen, and Mung Chiang.

2012. Joint VM Placement and Routing for Data Center Traffic Engineering. In
INFOCOM, 2012 Proceedings IEEE. IEEE, 2876–2880.

[21] Swastik Kopparty, Srikanth V Krishnamurthy, Michalis Faloutsos, and Satish K
Tripathi. 2002. Split TCP for Mobile Ad-hoc Networks. In Global Telecommuni-
cations Conference, 2002. GLOBECOM’02. IEEE, Vol. 1. IEEE, 138–142.

[22] Federico Larumbe and Abhishek. Mathur. 2015. Under the Hood: Broadcasting
Live Video to Millions. goo.gl/qpBAJM. (2015).

[23] Franck Le, Erich Nahum, Vasilis Pappas, Maroun Touma, and Dinesh Verma. 2015.
Experiences Deploying a Transparent Split TCP Middlebox and the Implications
for NFV. In Proceedings of the 2015 ACM SIGCOMMWorkshop on Hot Topics in
Middleboxes and Network Function Virtualization. ACM, 31–36.

[24] Hongqiang Harry Liu, Raajay Viswanathan, Matt Calder, Aditya Akella, Ratul
Mahajan, Jitendra Padhye, and Ming Zhang. 2016. Efficiently Delivering Online
Services over Integrated Infrastructure. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16). 77–90.

[25] Yong Liu, Yang Guo, and Chao Liang. 2008. A Survey on Peer-to-peer Video
Streaming Systems. Peer-to-peer Networking and Applications 1, 1 (2008), 18–28.

[26] Xiaoqiao Meng, Vasileios Pappas, and Li Zhang. 2010. Improving the Scalability
of Data Center Networks with Traffic-aware Virtual Machine Placement. In
INFOCOM, 2010 Proceedings IEEE. IEEE, 1–9.

[27] Matthew K Mukerjee, David Naylor, Junchen Jiang, Dongsu Han, Srinivasan
Seshan, and Hui Zhang. 2015. Practical, Real-time Centralized Control for CDN-
based Live Video Delivery. In Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication. ACM, 311–324.

[28] Tim Peterson. 2017. Twitter’s NFL Streams Averaged 265,800
Viewers per Minute across 10 Games. http://marketingland.com/
twitters-nfl-streams-averaged-265800-per-minute-viewers-across-10-games-204824.
(2017).

[29] Karine Pires and Gwendal Simon. 2015. Youtube Live and Twitch: A Tour of User-
generated Live Streaming Systems. In Proceedings of the 6th ACM Multimedia
Systems Conference. ACM, 225–230.

[30] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar, and
Minlan Yu. 2013. SIMPLE-fying Middlebox Policy Enforcement using SDN. In
ACM SIGCOMM computer communication review, Vol. 43. ACM, 27–38.

[31] Dan Rayburn. 2010. For Video Delivery, It’s not about A Distributed
Vs. Non-Distributed Network. http://blog.streamingmedia.com/2010/04/
for-video-delivery-its-not-about-distributed-versus-nondistributed.html.
(2010).

[32] Alex Rousskov and Valery Soloviev. 1999. A Performance Study of the Squid
proxy on HTTP/1.0. World Wide Web 2, 1-2 (1999), 47–67.

[33] Rusty Russell and Harald Welte. 2002. Linux Netfilter Hacking Howto. http:
//www.netfilter.org/documentation/HOWTO/netfilter-hacking-HOWTO.html.
(2002).

[34] Giuseppe Siracusano, Roberto Bifulco, Simon Kuenzer, Stefano Salsano,
Nicola Blefari Melazzi, and Felipe Huici. 2016. On the Fly TCP Acceleration with
Miniproxy. In Proceedings of the 2016 workshop on Hot topics in Middleboxes and
Network Function Virtualization. ACM, 44–49.

[35] Raymond Sweha, Vatche Ishakian, and Azer Bestavros. 2012. Angelcast: Cloud-
based Peer-assisted Live Streaming using Optimized Multi-tree Construction. In
Proceedings of the 3rd Multimedia Systems Conference. ACM, 191–202.

[36] Bolun Wang, Xinyi Zhang, Gang Wang, Haitao Zheng, and Ben Y Zhao. 2016.
Anatomy of a Personalized Livestreaming System. In Proceedings of the 2016
ACM on Internet Measurement Conference. ACM, 485–498.

[37] Matthias Wichtlhuber, Robert Reinecke, and David Hausheer. 2015. An SDN-
based CDN/ISP collaboration architecture for managing high-volume flows. IEEE
Transactions on Network and Service Management 12, 1 (2015), 48–60.

[38] Tilman Wolf, Shulin You, and Ramaswamy Ramaswamy. 2005. Transparent
TCP acceleration through network processing. In Global Telecommunications
Conference, 2005. GLOBECOM’05. IEEE, Vol. 2. IEEE, 5–pp.

[39] Hao Yin, Xuening Liu, Tongyu Zhan, Vyas Sekar, Feng Qiu, Chuang Lin, Hui
Zhang, and Bo Li. 2009. Design and Deployment of a Hybrid CDN-P2P System
for Live Video Streaming: Experiences with LiveSky. In Proceedings of the 17th
ACM international conference on Multimedia. ACM, 25–34.

[40] Cong Zhang and Jiangchuan Liu. 2015. On Crowdsourced Interactive Live
Streaming: a Twitch.tv-based Measurement Study. In Proceedings of the 25th
ACM Workshop on Network and Operating Systems Support for Digital Audio and
Video. ACM, 55–60.

https://www.sdxcentral.com/articles/news/att-integrated-cloud-count-100-data-centers-year-end/2016/04/
https://www.sdxcentral.com/articles/news/att-integrated-cloud-count-100-data-centers-year-end/2016/04/
http://goo.gl/Q9c1KK
https://bashtech.net/twitch/ingest.php
https://osrg.github.io/ryu/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-ec2-config.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-ec2-config.html
https://www.isoc.org/isoc/conferences/inet/08/docs/inet2008_kiagri.pdf
https://www.isoc.org/isoc/conferences/inet/08/docs/inet2008_kiagri.pdf
https://youtube.googleblog.com/2012/10/mission-complete-red-bull-stratos-lands.html
https://youtube.googleblog.com/2012/10/mission-complete-red-bull-stratos-lands.html
https://goo.gl/joQtjz
http://dpdk.org
goo.gl/qpBAJM
http://marketingland.com/twitters-nfl-streams-averaged-265800-per-minute-viewers-across-10-games-204824
http://marketingland.com/twitters-nfl-streams-averaged-265800-per-minute-viewers-across-10-games-204824
http://blog.streamingmedia.com/2010/04/for-video-delivery-its-not-about-distributed-versus-nondistributed.html
http://blog.streamingmedia.com/2010/04/for-video-delivery-its-not-about-distributed-versus-nondistributed.html
http://www.netfilter.org/documentation/HOWTO/netfilter-hacking-HOWTO.html
http://www.netfilter.org/documentation/HOWTO/netfilter-hacking-HOWTO.html

	Abstract
	1 Introduction
	2 Motivation and Related Work
	2.1 User Dynamics in Emerging Commercial Live Broadcasting Services
	2.2 Evolution of Live Content Broadcast
	2.3 Session Hijacking

	3 System Design
	3.1 LiveJack Overview
	3.2 LiveJack Workflow

	4 Implementation
	5 Evaluation
	5.1 LAN Evaluation
	5.2 WAN Evaluation

	6 Discussion
	7 Conclusion
	References

