
Architecting Multimedia Conferencing Service
using SDN

Bo Yan*†, Rittwik Jana†, Shu Shi†, Yang Xu*, Bo Han†,
Vijay Gopalakrishnan†, Lusheng Ji†, H. Jonathan Chao*

*New York University †AT&T Labs-Research
Tandon School of Engieering 1 AT&T way

Brooklyn, NY 11201 Bedminster, NJ 07921

ABSTRACT
Modern Web-enabled multimedia conferencing systems re-
lays the source video flows to all call participants through
media conferencing servers. This solution works well for
small conference groups. However, as the conference size
increases, the outbound bandwidth of the conferencing server
becomes the bottleneck, which limits the scalability of the
system and eventually degrades conference QoS. In this pa-
per, we re-architect the multimedia conferencing service us-
ing Software-Defined Networks (SDN) that provides enhanced
scalability and service orchestration. The main idea of our
approach is to decouple the data plane and the control plane
of the conferencing service. We advertise the group-based
traffic forwarding capability of commodity OpenFlow switches
as OpenFlow Selective Forwarding as a Service (OFSFaaS).
The conferencing server now only handles control traffic,
and dynamically establish media channels using OpenFlow
switches through OFSFaaS. Preliminary prototype evalua-
tions show that OFSFaaS eliminates the outbound bottleneck
at conferencing servers and scales efficiently. OFSFaaS can
be subscribed to by a wide range of multimedia services.

Keywords
Multimedia Conferencing; SDN; OpenFlow

1. INTRODUCTION
A key motivation for software-defined-networking (SDN)

is that it enables network programmers to efficiently manage
the network that would otherwise be difficult to realize using
existing control plane mechanisms [12, 15]. Application de-
velopers, on the other hand, do not typically have the exper-

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

CAN’16, December 12 2016, Irvine, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4673-3/16/12. . . $15.00

DOI: http://dx.doi.org/10.1145/3010079.3012016

tise (e.g. network topology, routing, table management) to
design applications that use the various programmable fea-
tures offered by SDN. Traditionally, application developers
worry about the logic of the application they are develop-
ing and expect the network to efficiently transfer the packets
to/from the applications or endpoints. This sharp separation
between the application layer and the network layer is be-
coming fuzzy with the prominence of network programma-
bility [4]. In this paper, we investigate how to advertise ad-
vanced data plane capabilities as a service, which can fa-
cilitate smart applications such as multimedia conferencing
with the objective of maximizing scale and efficiency.

In a multimedia conferencing system, forwarding the video
stream of every conference participant to all other partici-
pants is a core function of a conferencing server. Most mod-
ern conferencing systems have signaling channels and me-
dia channels as depicted in Figure 1. The signaling channel
coordinates the conference by exchanging control messages
between the clients and the signaling servers, which initiates
or terminates sessions, notifies errors, and exchanges codecs
and media types. The media channel is negotiated apriori as
part of session initiation through the signaling channel for a
client to send and receive multimedia contents.1 Today con-
ferencing servers are hosted in the clouds, typically having
an outbound bandwidth of 62.5-250Mbps [6]. The software
solution is to selectively forward a subset of streams (e.g.,
only the streams of active speakers) to all participants. As
the number of clients grows, the server can quickly become
a bottleneck due to insufficient outbound bandwidth.

Such a challenge can be alleviated by leveraging the SDN
capabilities that modern networks can provide. Recent pro-
grammable data planes such as OpenFlow, DPDK and P4
support group-based traffic forwarding [8, 19]. By program-
ming rules and groups, media channels can be deployed on-
the-fly through network devices without passing through the
application server. Since commodity OpenFlow switches
support up to 1.44Tbps aggregate bandwidth [5, 2], the band-
width bottleneck of the conferencing server is relieved. This

1Refer to Section 2 for a brief discussion of challenges of
various conferencing systems.

http://dx.doi.org/10.1145/3010079.3012016

Signaling
Server

Conferencing
Server

Signaling

Client 1
Client 2 …

B
(n-1)B

Ingress Bw: nB
Egress Bw: n(n-1)B

Client n
Internet

Media

Figure 1: Conventional media bridge conferencing

motivates us to advertise SDN group-based forwarding as
a service, which can be subscribed by multimedia confer-
encing system. However, to develop such a service faces
significant challenges:

• Providing APIs oblivious to network details. Existing
network programming platforms such as OpenFlow pro-
tocol [19] and Pyretic [15] require an explicit specifi-
cation of data plane policies with the knowledge of net-
work details (e.g. network topology, physical port of a
switch to forward traffic), which is beyond the exper-
tise of most application developers. Therefore, the ser-
vice needs to provide APIs oblivious to these network
details, and automatically compile rules and groups in
switches to control media flows.

• Zero disturbance to non-conferencing traffic. As an
application level service, it is unaware of the existing
traffic in the network. Therefore, the rules and groups
need to be carefully crafted, so that the forwarding be-
havior of non-conferencing traffic is not affected.

• Efficient use of switch memory. Commodity Open-
Flow switches today support 4k-125k rules and 10k
groups [2]. Since switch table memory resource is
shared with other applications, the number of rules and
groups in the switch used to implement conferencing
needs to be minimized, so that more application in-
stances can be composed using SDN.

To address these problems, we design the OpenFlow Se-
lective Forwarding as a Service (OFSFaaS) to advertise the
group-based forwarding capability of OpenFlow switches.
We modify a multimedia conferencing system to subscribe
to OFSFaaS, downshift the stream forwarding function to
OpenFlow switches, and establish media channels on-the-
fly. Our contributions can be summarized as follows,

• We propose architecting multimedia conferencing ser-
vice with SDN. By offloading media channel deploy-
ments from the conferencing server to the OpenFlow
switches, we improve scalability of the system.

• We design OFSFaaS with APIs to advertise the group-
based forwarding capability of OpenFlow switches to
applications without requiring detailed network infor-
mation. OFSFaaS implements media channels with
zero disturbance to existing network traffic, while effi-
ciently using switch table memory.

• We implement an OFSFaaS-enabled conferencing pro-
totype using Open vSwitch, Ryu OpenFlow controller,

and Jitsi Video Bridge [3, 11]. The evaluation results
show that OFSFaaS helps scale multimedia conferenc-
ing with more clients supported, and improves the con-
ferencing QoS significantly.

The rest of this paper is organized as follows: Section 2
introduces the background and our approach of multimedia
conferencing. Section 3 presents the OFSFaaS design. Sec-
tion 4 shows our conferencing prototype and preliminary re-
sults. In Section 5 we generalize OFSFaaS towards support
for comprehensive network and multimedia application sce-
narios. Finally, we conclude our work in Section 6.

2. BACKGROUND AND APPROACH
2.1 Multimedia Conferencing Techniques

IP multicast: Traditionally, multimedia conferencing has
been suggested using IP multicast [10]. However, IP multi-
cast faces configuration challenges which prohibit a widespread
commercial deployment to support clients universally [9].
Recently, a series of studies such as [17, 18] investigates on
implementing IP multicast with SDN. However, the lack of
the adoption of IP multicast in today’s multimedia applica-
tions limits their applicability.

P2P: Skype popularized conferencing via an overlay peer-
to-peer (P2P) network [7]. However, with all the processing
being pushed to the clients, it is difficult to deliver high-
quality conferencing services to a large number of clients.
Each client creates multiple media streams to its peers, which
can congest the client’s uplink when the number of its peers
is large. Depending on the measured bandwidth between
peers, the video may need to be encoded differently on each
media channel, which burdens the CPUs at client devices.

Media Bridging: To achieve better scalability, enterprises
employ a media bridge architecture (Figure 1), where the
conferencing server deployed within the enterprise network
or a cloud acts as a ‘bridge’ for media channels to be relayed
through [1, 11]. While this strategy simplifies the complex-
ity of clients, the aggregate bandwidth usage scales by the
square of the group size, which can also congest the out-
bound bandwidth of the conferencing server.
2.2 Proposed Approach: Multimedia Con-

ferencing using SDN
OpenFlow v1.1 or above provides the capability to relay

traffic using multiple flow tables and a group table in an
OpenFlow switch [19]. The OpenFlow controller can dy-
namically program rules in the flow tables and groups in the
group table. Each rule consists of matching fields to match
against packets, and an action to forward traffic. We set the
action of each rule to forward traffic to a particular group
with multiple actions for different clients.

Both the functional support and recent performance im-
provements of programmable switches motivate us to use the
group-based forwarding capability to enable a high-performance
multimedia conferencing service.2 We developed OpenFlow
Selective Forwarding as a Service (OFSFaaS) to advertise
2Recent switch products can handle 12K flow entry updates
per second [2], which provides real-time update capability.

Signaling
Server

Conferencing
Server (OFSFaaS)

Signaling

Client 1

Client 2

…

Client n

LAN
Media

OpenFlow
Controller

OpenFlow-
Switch

Transcoder,
IDS, Archive

…

Figure 2: Multimedia Conferencing using SDN

this capability. The application developers can now discover
and leverage OFSFaaS, and redesign the conferencing ap-
plication. Figure 2 presents the architecture of our proposed
system. The signaling channels are established using con-
ventional L2/L3 networking through the signaling server.
Different from existing architectures, the conferencing server
subscribes to OFSFaaS. OFSFaaS connects to the OpenFlow
controller and creates the media channels between clients
and OpenFlow switches.

Our design benefits multimedia conferencing in two ways,
• From the performance perspective, the bandwidth bot-

tleneck at the conferencing server is relieved. Only
the signaling traffic, which is tiny even for coordinat-
ing large conference group sizes, is processed by the
conferencing server. Since the OpenFlow switch has
high data plane throughput, decoupling the media traf-
fic from the conferencing server in this manner at the
switch can deliver a high QoS.

• From the management perspective, the conferencing
application can be orchestrated with other services. For
instance, traffic can now be dynamically chained through
other media functions such as media transcoding, in-
trusion detection, and data archiving.

As a proof of concept, in this work we consider conferenc-
ing service deployment in a LAN environment. The gate-
way of the conferencing server and the signaling server is
an OpenFlow-enabled switch, which supports hybrid Open-
Flow operations and conventional L2 switching and L3 rout-
ing features [19]. In this setup, all the conferencing traffic
traverses through the OpenFlow switch. The entire design
is made transparent to the clients, and the upgrades are only
applied at the service provider edge, which simplifies ser-
vice deployments. We also use unencrypted streams in our
implementation for the sake of simplicity. We will extend
our work to support encryption, wide area deployment and
richer application scenarios as discussed in Section 5.

3. OFSFaaS DESIGN
3.1 OFSFaaS-enabled Conferencing

OFSFaaS is an application level service collocating with
the conferencing application (Figure 3). The signaling server
establishes signaling channels with the conferencing pro-
gram and clients using standard XMPP or SIP protocols [11].
To set up media channels, OFSFaaS learns the negotiated
sockets of the media channel from the northbound multi-
media application and determines the physical port attached
to each client from the southbound OpenFlow controller.

OpenFlow Switch

OpenFlow Controller: Ho
H1

Signaling Server
(XMPP): HX

port 1 port 2

H2

OFSFaaS

Conferencing App
Conferencing Server: HC

H3 (New)

1. subscribe(G1, Ho, Hx,
UDP/RTP, All-to-All)

4. addClient(G1,
sigP3,<H3,HC>)

2. packetIn(sigP3, port 1) 5. updateSwitch

3. signaling channels
via L2/L3 networking

Figure 3: OFSFaaS-enabled conferencing workflow

The multimedia application such as conferencing system can
leverage the northbound API of OFSFaaS to deploy media
channels without detailed knowledge of the network.

OFSFaaS’s northbound API consists of three functions:
subscribe(group, OFcontroller, sigServer,

mediaProto, fwdPolicy)
addClient(group, sigPacket, mediaChannel)
delClient(group, mediaChannel)

The subscribe function registers a conferencing group
to OFSFaaS. OFcontroller and sigServer inform OFSFaaS
about the sockets to talk with the OpenFlow controller and
the signaling server. mediaProto specifies the type of proto-
col to implement the media channels, and fwdPolicy defines
the selective forwarding policy between clients. addClient
or delClient is called whenever a client joins or leaves a
conferencing group. mediaChannel contains the negotiated
sockets of the media channel for the client. The new signal-
ing packet sigPacket is used as a credential for OFSFaaS to
match the physical port attached to the client.

OFSFaaS’s southbound API consists of two functions:
packetIn(sigPacket, port)
updateSwitch(list<rule>, group)

Whenever a new client joins a group, the new signaling
packet is copied to the OpenFlow controller as a PacketIn
message. The PacketIn message carries the physical port
where the signaling packet arrives from, and reaches OFS-
FaaS through the packetIn function. The original signal-
ing packet is sent to the signaling server through L2/L3 net-
working. By matching two copies of sigPacket received by
packetIn and addClient, OFSFaaS learns the physical
port of the switch to which the client is connected. Finally,
OFSFaaS compiles necessary rules and groups, and imple-
ments the media channels using updateSwitch.

Figure 3 gives an example workflow of OFSFaaS-enabled
multimedia conferencing. The conferencing application first
subscribes to OFSFaaS (Step 1). All-to-All specifies that the
media traffic of each client is relayed to all the other clients.3

Suppose clients H1 and H2 are already in a conference, and
a new client H3 is joining in. The new signaling packet
sigP3 is copied both to the controller (Step 2) and to non-
OpenFlow L2/L3 switching port (Step 3). With the signaling
channel established between H3 and HX , the conferencing
application follows the original logic to negotiate the me-

3In addition to All-to-All, 1-to-All or K-to-All is supported
to implement other multimedia applications such as WebTV
or Webinar.

Group Table

Flow Table

…

 Src IP:TCP=H1 Dst IP:TCP=HX

 Src IP:TCP=H3 Dst IP:TCP=HX

…

…

To
Client H3

 Src IP:UDP=H2 Dst IP:UDP=HC Fwd G2

Normal

Normal

Any PacketIn

Normal
L2/L3

Switching

 Src IP:TCP=H2 Dst IP:TCP=HX Normal

Dst IP:TCP=HX

R6

R1 Fwd G0

NormalR0

 Src IP:UDP=H3 Dst IP:UDP=HC Fwd G3R5

 Action 1:
 SNAT = HC
 DNAT = H2
 Fwd Port 2
 Action 2:
 SNAT = HC
 DNAT = H3
 Fwd Port 1

G1
 Src IP:UDP=H1 Dst IP:UDP=HCR7

To
Client H1

To
Client H3

To
Client H2

 Action 1:
 SNAT = HC
 DNAT = H1
 Fwd Port 2
 Action 2:
 SNAT = HC
 DNAT = H3
 Fwd Port 1

G2

 Action 1:
 Fwd Controller
 Action 2:
 Normal

G0

i. New
 Signaling
 Packets

ii. Established
 Signaling
 Packets

iv. Non-
Conferencing
Traffic

iii. Media
 Packets

Fwd G1

R4

R3

R2

(a) Strawman implementation

Flow Table T0

Flow Table T1

Group Table

…

To
Client H1

To
Client H2

To
Client H3

 Action 1:
 SNAT=HC
 DNAT=H1
 Fwd Port 2
 Action 2:
 SNAT=HC
 DNAT=H2
 Fwd Port 2
 Action 3:
 SNAT=HC
 DNAT=H3
 Fwd Port 1

G1

PacketIn

 Src IP=H1 Tag Meta C1
GoTo T1

…

R4
 Meta C1
 Dst IP=HC
 Proto=UDP

Fwd G1

 Src IP=H3 Tag Meta C1
GoTo T1

R2

R6

…

Normal
L2/L3

Switching

Metadata
C1

i. New
 Signaling
 Packets

ii. Established
 Signaling
 Packets

Any Normaliv. Non-
 Conferencing
 Traffic

R0

iii. Media
 Packets

 Src IP=H2
R3

 Action 1:
 Fwd Controller
 Action 2:
 Normal

G0

Tag Meta C1
GoTo T1

 Dst IP:TCP=HX Fwd G0R1

AnyR5 Normal

(b) Resource efficient implementation
Figure 4: Table management implementations for OFSFaaS-enabled multimedia conferencing service. Grey entries are stati-
cally deployed. Yellow entries are updated on demand.

dia channel between H3 and HC , and notifies OFSFaaS to
addClient (Step 4). By matching sigP3 from packetIn
and addClient, OFSFaaS learns that H3 resides at port 1
of the switch. Finally, OFSFaaS is able to generate the cor-
responding rules and groups to deploy the channels (Step 5).
The switch table management conducted by updateSwitch
needs to satisfy the following data plane policies:

Policy i. New signaling packets are forwarded to both the
OpenFlow controller and the L2/L3 switching port.

Policy ii. Established signaling packets are forwarded to
normal L2/L3 switching port.

Policy iii. The media traffic is forwarded to all the clients
in the same group.

Policy iv. Non-conferencing traffic remains intact.

3.2 Switch Table Management
In this section, we present the switch table management

that implements the above data plane policies. We consider
two design goals: First, zero disturbance to the forwarding
behavior of non-conferencing traffic in the network. OFS-
FaaS is not aware of the non-conferencing traffic or the table
configuration of the OpenFlow switch for other services. To
ensure that other services are undisturbed, a correct imple-
mentation of Policy iv is critical.4 Second, minimized ta-
ble usage and update frequency. Note that the table memory
and the control channel bandwidth are limited for OpenFlow
switches, especially considering OFSFaaS is sharing the re-
source with other services. By minimizing the resource con-
sumed, the system can sustain more application instances,
such as conferences, at the same time.

3.2.1 A Strawman Implementation
Figure 4a presents a strawman implementation using a

single flow table and a group table. The main idea is to
configure exact rules for each policy and forward the media
traffic to designated groups. We use the example in Figure 3

4This shares similar goal with network verification. Since
channels need to be established or updated in real time, we
cannot rely on network verification engines [13] to check
the policies due to the latency. By crafting the format of
rules and groups, OFSFaaS achieves verification-free with
correctness.

to explain the implementation. The rule with a higher index
has a higher priority.

Rules R0, R1 and group G0 are statically installed to im-
plement Policy i and Policy iv. The default rule R0 for-
wards all non-conferencing traffic using conventional L2/L3
switching by specifying the action as ‘NORMAL’. Rule R1

matches every new XMPP signaling packet and forwards it
to group G0. G0 directs it to both the controller and the
L2/L3 switching port. The new XMPP packet sent to the
controller is forwarded to OFSFaaS by the packetIn func-
tion. Meanwhile, the other copy forwarded through L2/L3
port sets up the signaling channel.

The rest of the rules and groups are deployed dynamically
for Policy ii and Policy iii. After a signaling channel is estab-
lished, a flow entry is installed to avoid further XMPP mes-
sages to be sent to the controller. In the example, R2, R3, R4

matches the 5-tuple of the established XMPP packets, and
direct them to L2/L3 network to fulfill Policy ii. To deploy
the media channel negotiated through signaling, each client
has a rule installed to classify the 5-tuple of the media chan-
nel, and to direct the packets to the designated group. Each
group applies all the actions which forwards the traffic to the
corresponding destinations (Policy iii). Here the ports to for-
ward are previously learned from the new signaling packets.
In the example, the media traffic from client H1 matches rule
R7 and gets forwarded to clients H2 and H3 through port 2
and port 1, respectively. To achieve transparency to clients,
SNAT and DNAT are applied to set the source as the confer-
encing server HC and the destination to each client.

By composing exact entries, the strawman implementa-
tion enforces the data plane policies. However, it costs a
total of 2N flow entries and N group entries for N clients,
which is inefficient in table usage. Every client arrival or de-
parture triggers two rule updates and multiple group updates,
which can throttle the control channel of the switch.
3.2.2 A Resource Efficient Implementation

We propose an alternative implementation with minimized
table usage and update frequency in Figure 4b. The idea is
to leverage the flow table pipeline and metadata to decou-
ple the classification of different fields. OpenFlow supports
pipeline processing of packets across multiple flow tables.

Conferencing /
Signaling VM

XMPP + JVB

vClients

100Mbps/
200Mbps

Open vSwitch
Bandwidth:
Figure 6(a)

Receive bitrate:
Figure 6(b)

…
Media

Signaling

(a) Conventional JVB setup

Conferencing /
Signaling VM
XMPP + JVB

vClients

100Mbps/
200Mbps Open vSwitch

Bandwidth:
Figure 6(a)

Receive bitrate:
Figure 6(b)

Ryu Controller

+ OFSFaaS
OpenFlow

…

Signaling

(b) OFSFaaS-enabled JVB setup
Figure 5: Testbed setup

Metadata is a register attached to each packet to carry infor-
mation across the tables. A rule may tag the metadata of the
matched packets, which can be later used in the next table
for classification. Metadata is removed before the packet is
sent to the output ports of the switch.

In this implementation, We use two flow tables in the
pipeline. Same as the strawman implementation, R0, R1, R5

and G0 are statically installed for Policy i and Policy iv. In
flow table T0, the source IP address is classified as traffic
from accessed clients. The metadata is tagged with the con-
ference ID to identify that all three clients are in the same
conference C1. Traffic from clients in other conferencing
groups shall be tagged with different metadata. In flow table
T1, Rule R7 matches the media packets carrying metadata
C1 and destined to the conferencing server HC , and directs
them to group G1 (Policy iii). The established signaling traf-
fic and non-conferencing traffic are forwarded through non-
OpenFlow switching (Policy ii and Policy iv). In the group
table, we generate a single group for each conference, which
forwards the traffic to all the clients in the conference. Note
that here the media traffic is sent back to the origin, which
creates overhead. We argue that in a large conference, trad-
ing the bandwidth overhead for a smaller number of group
entries is worthwhile. The played back traffic can be used at
clients to evaluate media channel quality.

The memory efficient table management compresses flow
table usage to N +C, and the group table usage to C, where
C is the number of conferencing groups. For each joining
client, only one rule and one group need to be updated.

4. PRELIMINARY EVALUATIONS
To justify our design, we implement an OFSFaaS-enabled

multimedia conferencing prototype using Jitsi VideoBridge
(JVB) as depicted in Figure 5. JVB is an open source se-
lective forwarding unit supporting conferencing, VoIP, IM
and WebRTC. The SDN environment is enabled by Open
vSwitch and Ryu controller [3]. We deploy our testbed on a
Dell server with two 8-core Xeon E5-2630 processors with
64G RAM. To isolate performance, the signaling and con-
ferencing servers, and the OpenFlow controller are deployed
at VMs with four virtual cores. The virtual clients and the
Open vSwitch are running on the host machine.

 0

 20

 40

 60

 80

 100

 120

 140

 2 3 4 5 6 7 8 9 10

B
a
n
d
w

id
th

 u
sa

g
e
 (

M
b
p
s)

No. of clients

JVB - 100M
JVB - 200M

JVB+OFSFaaS - 100M

(a) Outbound bandwidth usage of conferencing server

 0

 500

 1000

 1500

 2000

 2 3 4 5 6 7 8 9 10

R
e
ce

iv
e
 B

it
ra

te
 (

kb
p
s)

No. of clients

360p

480p

720p

JVB - 100M
JVB - 200M

JVB+OFSFaaS - 100M

(b) Average receive bitrate at clients
Figure 6: Performance comparison of conventional JVB and
OFSFaaS-enabled JVB conferencing services

In the conventional JVB setup (Figure 5a), JVB is de-
ployed at the Conferencing/Signaling VM to support the vir-
tual clients. The Open vSwitch runs in traditional L2/L3
modes. The media traffic from all virtual clients is relayed
through the Conferencing/Signaling VM. In the OFSFaaS-
enabled JVB (Figure 5b), the Open vSwitch is controlled by
the Ryu controller. JVB leverages OFSFaaS to setup media
channels. Therefore only the signaling traffic flows to the
Conferencing/Signaling VM. To evaluate the scalability, in
both systems we rate limit the outbound bandwidth of the
Conferencing/Signaling VM at 100Mbps or 200Mbps [6].
We vary the group size to evaluate the scalability of both
conferencing architectures.

The average outbound bandwidth used at the Conferenc-
ing/Signaling VM is depicted in Figure 6a. For conventional
JVB, the bandwidth usage initially increased by the square
of the group size. With 100Mbps rate limit, bandwidth us-
age starts to smooth out at 70% utilization. As JVB senses
packet loss at the media channel, it initiates rate control to
lower the video quality. With 200Mbps rate limit, rate con-
trol occurs at around 65% utilization. By comparison, OFS-
FaaS only has signaling traffic reach the Conferencing/Sig-
naling VM, which consumes a small outbound bandwidth.

The receive bitrate at the client shows consistent results in
Figure 6b. Conventional JVB initially delivers a bitrate of
2.1Mbps, which supports an advertised resolution of 720p.
However, the bitrate drops intensely when more clients join
in. With 100Mbps outbound bandwidth at the conferenc-
ing server, the receive bitrate drops to 500kbps when there
are ten clients in a conference, which fails to support a 360p
resolution. With 200Mbps, the performance also starts drop-
ping with more than eight clients. By comparison, OFSFaaS-
enabled JVB achieves a stable bitrate of 2.1Mbps. Consider-
ing the CPU and memory, we test a maximum conference
group of 32 clients with 1024 video streams. OFSFaaS-
enabled does not suffer from quality degradations. The re-

Cloud

Media Server
(OFSFaaS)

Client

Client

Signaling
Server

Signaling

OpenFlow

OpenFlow-
enabled Switch

OpenFlow-
enabled Switch

Internet

IDS, Transcoder,
Archive …

Client

Media

Figure 7: Wide-area OFSFaaS-enabled media services

sults prove that the bandwidth bottleneck at the conferencing
server is relieved, and indicate support for a large number of
clients when we deploy OFSFaaS using hardware switches.

We also compared the service setup time for new clients
between conventional JVB and OFSFaaS-enabled JVB. We
find that the channel negotiation dominates the latency, while
the table update time in Open vSwitch is negligible.

5. DISCUSSIONS AND FUTURE WORK
In this work, we implement OFSFaaS in a LAN environ-

ment. We plan to extend OFSFaaS to support various net-
work environments and general multimedia services. We list
some of the research issues that pertain to this topic.

Wide-area Deployments. Figure 7 shows the wide-area
deployment of OFSFaaS-enabled media services such as con-
ferencing with multiple OpenFlow switches. To deliver high
quality of experience (QoE), OFSFaaS needs to intelligently
route media traffic to avoid congested paths, or to flexibly
steer traffic through required media function boxes such as
Intrusion Detection System (IDS), transcoder, or archive.
With multiple switches, we also have more flexibility to op-
timize both the use of link bandwidth and switch memory.
For instance, the conference traffic between two switches
(e.g. two distant groups in New York City and Los Ange-
les joining the same conference session) can be trunked in
one bundle before being replicated at the edge.

Securing Conferencing Service. Today, many confer-
encing services encrypt the media traffic. In conventional
JVB, clients exchange key information with the conferenc-
ing server, and encrypt the media channels using Secure RTP
protocol. OFSFaaS does not support traditional pairwise en-
cryption due to its multicast nature. To enable secure confer-
encing, we plan to implement the Encrypted Key Transport
(EKT) for Secure RTP originally proposed by [14]. The idea
is to negotiate a shared/common key amongst all clients in
the same conference for media channels.

Support for General Multimedia Applications. By de-
sign, OFSFaaS supports session-based media services such
as VoIP and WebRTC. We will further investigate its sup-
port for other multimedia applications, such as live content
delivery and crowd-sourced live streaming [16].

6. CONCLUSION
In this work, we proposed a novel and alternative approach

to a scalable multimedia conferencing service using SDN.
We exposed OpenFlow’s group-based traffic forwarding ca-
pability as a service API for application developers. Our
implementation shows that this approach helps scale mul-

timedia conferencing significantly while at the same time
keeping application development simple. Our broader vision
is to extend this design to more general network scenarios,
and eventually build a framework to discover and advertise
various data plane capabilities for application developers to
compose various multimedia services.

7. REFERENCES
[1] Getting Started with WebRTC.

http://www.html5rocks.com/en/tutorials/webrtc/basics/.
[2] NoviSwitch Overview.

http://noviflow.com/products/noviswitch/.
[3] Ryu SDN Framework. http://osrg.github.io/ryu/.
[4] OpenDaylight: Network Intent Composition Project.

https://wiki.opendaylight.org/view/Network_Intent_
Composition:Main, 2015.

[5] Pica8 Switch.
http://www.pica8.com/products/pre-loaded-switches, 2016.

[6] Amazon AWS. Amazon EC2 Instance Configuration.
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
ebs-ec2-config.html.

[7] S. A. Baset and H. Schulzrinne. An Analysis of the Skype
Peer-to-Peer Internet Telephony Protocol. arXiv preprint
cs/0412017, 2004.

[8] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown,
J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,
G. Varghese, et al. P4: Programming Protocol-independent
Packet Processors. ACM SIGCOMM Computer
Communication Review, 44(3):87–95, 2014.

[9] C. Diot, B. N. Levine, B. Lyles, H. Kassem, and
D. Balensiefen. Deployment Issues for the IP Multicast
Service and Architecture. Network, IEEE, 14(1):78–88,
2000.

[10] M. Handley, J. Crowcroft, C. Bormann, and J. Ott. The
Internet Multimedia Conferencing Architecture. Technical
report, Internet Draft, Internet Engineering Task Force, 1997.

[11] E. Ivov. Hangout-like Video Conferences with Jitsi
Videobridge and XMPP. 2013.

[12] N. Kang, Z. Liu, J. Rexford, and D. Walker. Optimizing the
One Big Switch Abstraction in Software-Defined Networks.
Proc. ACM CoNEXT, 2013.

[13] P. Kazemian, G. Varghese, and N. McKeown. Header Space
Analysis: Static Checking for Networks. In NSDI, pages
113–126, 2012.

[14] D. McGrew and D. Wing. Encrypted Key Transport for
Secure RTP. Work in Progress, 2007.

[15] C. Monsanto, J. Reich, N. Foster, J. Rexford, D. Walker,
et al. Composing Software Defined Networks. In NSDI,
pages 1–13, 2013.

[16] M. K. Mukerjee, D. Naylor, J. Jiang, D. Han, S. Seshan, and
H. Zhang. Practical, real-time centralized control for
cdn-based live video delivery. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data
Communication, pages 311–324. ACM, 2015.

[17] Y. Nakagawa, K. Hyoudou, and T. Shimizu. A management
method of ip multicast in overlay networks using openflow.
In Proceedings of the first workshop on Hot topics in
software defined networks, pages 91–96. ACM, 2012.

[18] K. A. Noghani and M. O. Sunay. Streaming multicast video
over software-defined networks. In 2014 IEEE 11th
International Conference on Mobile Ad Hoc and Sensor
Systems, pages 551–556. IEEE, 2014.

[19] OpenFlow Switch Specification. Version 1.5.0 (Wire
Protocol 0x06). https://www.opennetworking.org/, Dec 2014.

http://www.html5rocks.com/en/tutorials/webrtc/basics/
http://noviflow.com/products/noviswitch/
http://osrg.github.io/ryu/
https://wiki.opendaylight.org/view/Network_Intent_Composition:Main
https://wiki.opendaylight.org/view/Network_Intent_Composition:Main
http://www.pica8.com/products/pre-loaded-switches
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-ec2-config.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-ec2-config.html
https://www.opennetworking.org/

	Introduction
	Background and Approach
	Multimedia Conferencing Techniques
	Proposed Approach: Multimedia Conferencing using SDN

	OFSFaaS Design
	OFSFaaS-enabled Conferencing
	Switch Table Management
	A Strawman Implementation
	A Resource Efficient Implementation

	Preliminary Evaluations
	Discussions and Future Work
	Conclusion
	References

