
Dynamic Flow Scheduling for Power-Efficient Data
Center Networks

Zehua Guo?, Shufeng Hui†, Yang Xu†, H. Jonathan Chao†
?ChinaCache, †New York University

Email: ?guolizihao@hotmail.com, †{shufeng.hui, yang, chao}@nyu.edu

Abstract—Power-efficient Data Center Networks (DCNs) have
been proposed to save power of DCNs using OpenFlow. In these
DCNs, the OpenFlow controller adaptively turns on and off
links and OpenFlow switches to form a minimum-power subnet
that satisfies traffic demand. As the subnet changes, flows are
scheduled dynamically to routes composed of active switches and
links. However, existing flow scheduling schemes could cause
undesired results: (1) power inefficiency: due to unbalanced
traffic allocation on active routes, extra switches and links may
be activated to cater to bursty traffic surges on congested routes,
and (2) Quality of Service (QoS) fluctuation: because of the
limited flow entry processing ability, switches cannot timely
install/delete/update flow entries to properly schedule flows.

In this paper, we propose AggreFlow, a dynamic flow schedul-
ing scheme that achieves power efficiency in DCNs and im-
proved QoS using two techniques: Flow-set Routing and Lazy
Rerouting. Flow-set Routing achieves load balancing and reduces
the number of entry installment on switches by routing flows
in a coarse-grained flow-set fashion. Lazy Rerouting maintains
load balancing and spreads rerouting operations over a rel-
atively long period of time, reducing the burstiness of entry
installment/deletion/update on switches. We built a NS3 based
fat-tree network simulation platform to evaluate AggreFlow’s
performance. The simulation results show AggreFlow reduces
power consumption by about 18%, achieves load balancing and
improved QoS (i.e., low packet loss rate and reducing the number
of processing entries for flow scheduling by 98%), compared with
baseline schemes.

Index Terms—Power-efficient data center networks; power
saving; flow scheduling; OpenFlow

I. INTRODUCTION

The popularity of cloud services accelerates the expanding
of data centers. The high power consumption of data centers
has become one of the most important concerns of their
operators. Some recent studies present power-efficient DCNs,
which enable network components (e.g., switches and links)
to consume power proportionally to varying traffic demand
[1][2]. With ElasticTree [1], a key enabler of power-efficient
DCNs, traffic flows are consolidated on a subnet of the DCN
called minimum-power subnet, which is composed of the
minimum number of switches and links to sustain current
network traffic demand. Thus, unused network components
are turned off or put into sleep mode to save power [3]. When
traffic demand exceeds the current subnet’s capacity, more
switches and links will be powered on to form a new subnet
with sufficient capacity.

This work was conducted and completed while Dr. Zehua Guo was a
visiting research scholar in New York University from 2013 to 2014.

These power-efficient DCNs usually employ Software-
Defined Networking (SDN) (e.g., OpenFlow [4]) to consol-
idate and schedule flows. We argue that, to practically deploy
power-efficient DCNs, an efficient flow scheduling scheme
should achieve high power efficiency and improved Quality
of Service (QoS). However, existing flow scheduling schemes
cannot achieve the two aspects at the same time. ElasticTree
proposes balance-oblivious flow-level scheduling schemes that
consolidate flows in the DCN without load balancing consider-
ation [1]. Thus, when bursty traffic surges on congested routes,
extra switches and links may be activated to cater to the traffic
increase.

To achieve load balancing on active routes, the SDN con-
troller must take into account the load of each flow and
conduct fine-grained flow-level scheduling. In particular, when
some switches and links are about to be turned off to save
power, the controller has to reroute many existing flows to
maintain reachability and load balancing [1]. Since rerouting
an existing flow requires the controller to generate multiple
control messages to set up flow tables in the switches along
this flow’s old and new routes, a control message storm
occurs if a large number of flows are rerouted simultaneously.
The control message storm could impose a high processing
burden on switches to install/delete/update flow entries used
for flow scheduling. However, current OpenFlow switches
suffer from traditional hardware design and have a limited
processing ability (e.g., at most processing 200 entries per
second) [5][6]. Since the minimum-power subnet must change
with time-varying traffic demand [7][8][9], switches cannot
timely update their flow tables to properly schedule a large
number of flows, resulting in QoS fluctuation. The above
problems will be detailed in Sections II-B and II-C.

In this paper, we propose a dynamic flow scheduling scheme
named AggreFlow to achieve high power efficiency and load
balancing in DCNs with improved QoS. AggreFlow mainly
employs the two techniques listed below:

1) Flow-set routing. It aggregates flows into a small number
of flow-sets based on flows’ hash values, and achieves
load balancing by conducting routing in a coarse-grained
flow-set fashion, which reduces the number of control
messages for routing flows.

2) Lazy rerouting. Each time the minimum-power subnet
changes, a flow-set is not rerouted until a packet belong-
ing to the flow-set enters the network. Lazy rerouting
amortizes the rerouting operations on flow-sets over a

Fig. 1. Logical structure of a power-efficient DCN.

relatively long time, relieving switches from the control
message storms. In addition, lazy rerouting reroutes a
few flow-sets to maintain load balancing, and lets the
majority of flows still be forwarded on their original
routes. Hence, the amount of control messages for
rerouting operations is significantly reduced.

We built a NS3 based fat-tree network simulation platform
to evaluate AggreFlow’s performance. The simulation results
show AggreFlow reduces power consumption by about 18%,
achieves load balancing and improved QoS (i.e., low packet
loss rate and reducing control messages by 98%), compared
with baseline schemes.

II. BACKGROUND AND MOTIVATION

A. Power-efficient DCNs

Figure 1 shows the logical structure of a power-efficient
DCN, which is composed of a DCN (including servers,
switches and links) and a power consumption adapting system.
The power consumption adapting system enables network
components to consume power proportionally to traffic de-
mand in the DCN and uses two components: power optimizer
and flow scheduling [1][2]. Both components reside in an
OpenFlow controller with global network information. The
power optimizer component calculates the number of active
network components based on current network traffic demand,
configures power status of switches and links in the DCN,
and notifies the current subnet structure to the flow-scheduling
component [1][2]. Upon receiving the subnet structure, the
flow scheduling component consolidates flows by adaptively
routing and rerouting flows in the given subnet.

B. Imbalanced Loads on Active Routes

ElasticTree [1] proposes a simple balance-oblivious flow-
level scheduling to consolidate flows. In a fat-tree network,
the route of each flow is chosen in a deterministic left-to-
right order. Only when the capacity of the leftmost route
is insufficient for a flow, the second left route then will be
evaluated for the flow, and so forth. Thus, the left routes could
have more traffic loads than other routes, suffering from a
higher chance of congestion. Under such an unbalanced traffic
allocation, some links could be congested and request the
controller to turn on more switches and links to accommodate
bursty traffic surges while other links are under low utilization.
Since the DCN traffic variation exhibits bursty [7][8][9], it

Fig. 2. Flow rerouting using the flow-level scheduling scheme in a 3-layer
4-pod fat-tree network. f1 is a flow with forwarding route frf1.

could lead to unbalanced traffic allocation and impact power
efficiency.

C. QoS Fluctuation

In a subnet, we can achieve load balancing by rerouting
flows to the least loaded route [10]: the OpenFlow controller
uses its global network view to conduct flow-level scheduling.
We name this scheme balance-aware flow-level scheduling.
However, flow-level scheduling schemes could impose a high
burden on switches. First, flow-level scheduling schemes re-
quire multiple control messages to reroute an existing flow
by setting up flow tables of the switches along this flow’s
old and new routes. Figure 2 shows an example to reroute an
existing flow with flow-level scheduling schemes. Flow f1 is
originally forwarded on route e0 → a1 → c3 → a7 → e7
(red dash line). At time t1, switches c3 and a7 are turned off
to save power, and the controller immediately updates f1’s
route to route frf1: e0 → a0 → c0 → a6 → e7 (blue line).
The rerouting operation consumes five control messages: one
message to delete flow f1’s entry on switch a1, one message
to update flow f1’s entry on switch e0, and three messages to
install flow f1’s entries on switches a0, c0 and a6

1. At time
t2, the subsequent packets of flow f1 enter the DCN and are
forwarded on route frf1. In the worst case (i.e., switch a7
is not turned off in the above example), six control messages
(i.e., control message to switches e0, a0, a1, c0, a6 and a7)
are needed to reroute an existing flow.

Second, every time the minimum-power subnet changes,
flow-level scheduling schemes would reroute many flows (i.e.,
all flows on the soon-to-be-closed routes and many flows on
routes that will be still open) to maintain reachability and load
balancing. Reports show that a commercial data center can
consist of millions of flows [11][12]. To improve OoS, the
rerouting operations require switches to install/delete/update
entries in a very short period. We call this phenomenon the
control message storm. The traffic variation in DCNs exhibits
highly bursty [7][8][9][13], and the subnet reconfiguration
may happen frequently to save power or accommodate traffic
demand variation, leading to frequent control message storms.
However, current OpenFlow switches suffer from hardware

1The controller does not send control messages to delete flow f1’s entries at
switches c3 and a7 because they are closed and their flow tables are emptied.

design (e.g., flow entries must be organized in the TCAM
in a priority order for correct and efficient matching; control
messages must contend for limited bus bandwidth between a
switch’s CPU and ASIC [5]), and they have limited capacities
to process entry update (e.g., Pica8 Pronto 3780 can only
update at most 200 entries per second [6]). Therefore, the
switches would not be able to timely update entries for all
rerouting flows and thus degrade QoS.

D. Design Principles for Efficient Flow Scheduling Schemes

Based on the above analysis, we have the below considera-
tions to design an efficient flow scheduling scheme for DCNs:

1) High power efficiency: as traffic varies, flows should be
dynamically consolidated and rerouted to as few links as
possible so that unused switches and links can be turned
off or put into to sleep mode for power saving.

2) Good load balancing: in the minimum-power subnet,
good load balancing among active routes can prevent
activating extra switches and links to accommodate
bursty traffic surges and save more power. Thus, we
should take into account the traffic load of active routes
to schedule flows.

3) Preventing control message storms: the main reason of
the control message storm is that the flow-level schedul-
ing scheme reroutes a large number of flows at the
same time when the minimum-power subnet changes.
To prevent control storms, we should (1) reduce the
number of rerouted flows, (2) avoid conducting rerouting
operations simultaneously, and (3) decrease the number
of control messages for route configuration.

III. AGGREFLOW OVERVIEW

A. Term Definition

We first highlight some important terms used for AggreFlow
and exemplify them in Figure 2.

Minimum-power subnet: a subnet of the DCN that is
composed of the minimum number of switches and links to
sustain the current network traffic demand.

Flow-set: a set of flows that are aggregated together based
on their hash values.

Ingress edge switch is: an edge switch that connects to a
flow’s source server.

Egress edge switch es: an edge switch that connects to a
flow’s destination server.

Forwarding route fr: a route from a flow’s ingress edge
switch to its egress edge switch.

Turning-point switch ts: a switch that is at the turning
point of a flow’s (or flow-set’s) forwarding route. In the fat-
tree topology, a turning-point switch is either a core switch
for inter-pod flows (which traverse different pods) or an
aggregation switch for intra-pod flows (which only traverse
aggregation switches in the same pod).

Upstream route ur: an upstream route that is directed from
a flow-set’s ingress edge switch to its turning-point switch.

Downstream route dr: a downstream route that is directed
from a flow’s turning-point switch to its egress edge switch.

In Figure 2, flow f1’s turning-point, source and destination
switches are c0, e0, and e7, respectively. Its uplink route is
e0 → a0 → c0; its downlink route is c0 → a6 → e7; its
forwarding route is e0 → a0 → c0 → a6 → e7; the minimum-
power subnet consists of all switches and links except the
powered-off switches c3 and a7 and links related to the two
switches.

B. AggreFlow Techniques

AggreFlow employs the three techniques to efficiently
schedule flows: Flow-set Routing, Lazy Rerouting and Adap-
tive Rerouting. Flow-set Routing conducts a coarse-grained
control on flows to reduce the number of control messages
for route configuration. In DCNs, some network functions,
such as traffic engineering, do not need each flow’s specific
information. For those functions, we can aggregate flows with
the same hash value into a flow-set, and conduct routing in a
coarse-grained flow-set fashion. Once we select a route for a
flow-set, the following new flows that belong to the flow-set
can be forwarded on the flow-set’s route without querying the
controller.

Lazy Rerouting avoids conducting rerouting operations si-
multaneously. The DCN traffic analysis shows a flow’s packet
arrivals exhibit an ON/OFF pattern [8][9][12][14]. For in-
stance, in DCNs, the inter arrival time of a flow’s two adjacent
packets is longer than 100 ms [12][14]. Thus, every time the
subnet changes, Lazy Rerouting updates the route of a ready-
to-be-rerouted flow-set2 only when a packet belonging to the
flow-set enters the network. Such a rerouting spreads rerouting
operations over a relatively long period of time, reducing
the bursitness of flow entry installment/deletion/update on
switches.

Adaptive Rerouting maintains load balancing on active
routes in the subnet. As flows enter and exit the network,
flow-sets’ sizes may vary randomly. We monitor active routes’
loads and adaptively reroute some flow-sets from high-loaded
routes to low-loaded routes to maintain load balancing. For
this technique, we can use many existing schemes.

C. Example

In Figure 3, we give an example that uses AggreFlow to
schedule the same flow f1 as in Figure 2. For simplicity,
we use a switch ID to represent the switch’s address in the
headers.

1) New Flow Routing: AggreFlow routes new flows as
follows: In Figure 3(a), (1) the first packet of flow f1 enters the
network from switch e0. The packet’s header is encapsulated
with a blank header and address e7, the address of its egress
edge switch. (2) Switch e0 cannot find flow f1’s flow-set,
and then sends the routing request to the controller. (3) The
controller informs switch e0 flow f1’s flow-set fs, which
is associated with hash value h and route e0 → c3. (4)
Switch e0 inserts address c3 into the packet’s header. (5)
Using address c3, the packet is forwarded on its upstream

2In this paper, we use rerouting and route update interchangeably.

(a) AggreFlow routes a new flow f1 by creating a new flow-set fs.

(b) AggreFlow routes a new flow f2 by using an existing flow-set fs.

(c) AggreFlow reroutes an existing flow f1 by updating the route of
the existing flow-set fs.

Fig. 3. Flow scheduling using AggreFlow in a 3-layer 4-pod fat-tree network
F(3,4). urfs is flow-set fs’s route; drf1 and drf2 are flows f1 and f2’s
downstream routes, respectively.

route urf : e0 → a1 → c3 to switch c3. At switch c3, the
address c3 is removed from the packet’s header. (6) Using
address e7, the packet is forwarded on its downstream route
drf1 : c3 → a7 → e7 to switch e7. At switch e7, the packet’s
header is removed. Finally, the packet is sent to its destination
server s15.

In Figure 3(b), new flow f2 with hash value h arrives at
switch e0. Switch e0 finds that flow f2 belongs to flow-set
fs, and then encapsulates c3 into the packet’s header without
querying the controller. After the encapsulation, flow f2 is
forwarded on flow-set fs’s route urfs and its downstream
route drf2.

In the routing procedure, the controller sends only one
control message to switch e0 to initialize flow-set fs by
configuring fs’s route urfs. After the initialization, no control
messages are needed to configure routes for flows belonging
to flow-set fs.

2) Existing Flow Rerouting: Figure 3(c) shows a process
that uses AggreFlow to reroute flow f1 in the same minimum-
power subnet as Figure 2. The process is explained below: At
time t1, switches c3 and a7 are turned off to save power,
and the controller notifies all edge switches about the subnet

Edge switch

Flow-set Search

Flow-set Creation Lazy Rerouting Adaptive Rerouting

es ts

pkt

Egress

Edge

Switch

Address

Turning-

point Switch

Address
Header

Modifica

-tion
es pktests

Controller

AggreFlow

Scheduler

Subnet Generation

AggreFlow

Agent

Fig. 4. AggreFlow processing procedure.

change. (1) At time t2, a packet of flow f1 enters the network
(assume it is the first packet that belongs to flow-set fs and
enters the network at the subnet change). (2) Switch e0 finds
that flow-set fs’s route is closed, and sends the rerouting
request to the controller. (3) The controller informs switch e0
to update flow-set fs’s route to e0 → c0. (4) Switch e0 inserts
address c0 into the packet’s header. (5)(6) Packet is forwarded
via updated routes urfs and drf1 to destination server s15.

In the rerouting procedure, AggreFlow reroutes flow-set
fs at time t2. Compared with the flow-level scheduling that
conducts rerouting operation at time t1, AggreFlow postpones
the operation a period of t2 − t1, and thus reduces switches’
instant entry update overhead at t1. Besides, the controller
only sends one control message to switch e0 to reroute flow-
set fs. Assume flow-set fs contains N flows. For the worst
case, flow-level scheduling consumes N ∗ 6 control messages
to reroute the N flows, while AggreFlow needs only one.
Therefore, AggreFlow not only spreads rerouting operations
over a relatively long time, but also reduces the number of
control message for configuring rerouted flows.

IV. AGGREFLOW DESIGN

In this section, we details AggreFlow’s processing proce-
dure and its modules.

A. AggreFlow Structure and Processing Procedure

Figure 4 shows AggreFlow’s structure and processing pro-
cedure. AggreFlow consists of three components: subnet gen-
eration, AggreFlow scheduler and AggreFlow agents. Subnet
generation considers the topology and traffic to determine the
number and the location of active switches and links in the
DCN. With the subnet’s structure, AggreFlow scheduler and
AggreFlow agents work together to efficiently schedule flows.

The input of an AggreFlow agent is the address of a
packet’s egress edge switch es, and the output is the address
of the packet’s turning-point switch ts3. The addresses of
two switches indicate the packet’s upstream and downstream
routes. Switches use the two headers to forward the packet
in the DCN. In the figure, each packet contains two headers
when it enters a switch. In the DCN, each server is equipped
with a system that stores the mapping relationship between
servers and edge switches connected to the servers. Thus,

3In this paper, we use turning-point switch and route for flow-set inter-
changeably.

Algorithm 1 FlowsetSearch(pf , Tis, Ris)
Input:
pf : flow f ’s packet;
Tis: flow-set routing table on ingress edge switch is;
Ris: the set of active routes connected to ingress edge switch
is.
Output:
tsfs: the turning-point switch address of flow-set fs that
contains flow f .

1: for packet pf arriving at switch is do
2: hf ← Hash(pf);
3: use hf to find (tsfs, FLCfs) in Tis;
4: if tsfs == ∅ then
5: tsfs ← FlowsetCreation(Tis, Ris, hf);
6: end if
7: if IsSubnetChanged == TRUE and
ShouldChangeRoutefs == TRUE then

8: tsfs ← LazyRerouting(Tis, Ris, tsfs);
9: end if

10: end for

before a packet leaves its source server, it is encapsulated
with its header es. Considering MTU packets injected in the
DCN cannot easily be expanded, we insert a blank header in
advance and will change it to address ts after the processing.
The header ts is selected by the modules detailed below.

B. Subset Generation

A fat-tree topology exhibits high regularity. Particularly,
links have the same capacity, switches have the same size,
and the topology is regular. We can take advantage of the
regularity of a fat-tree network to determine whether to turn
on/off switches or ports with much less computational burden.
Specifically, in the fat-tree network, we activate all edge
switches to accommodate traffic from servers. In each pod,
the number of active aggregation switches equals the number
of active links that support the aggregated uplink and downlink
traffic. For example, in Figure 2, assume the rate of each link
is 1 Gbps. If edge switch e0 sends 1.5 Gbps of traffic up to the
aggregation layer over two links, we must enable aggregation
switches a0 and a1 to satisfy that demand. Similarly, the
number of active core switches can be calculated based on
the aggregated traffic between aggregation switch layer and
core switch layer.

C. Flow-set Routing

Flow-set Routing is achieved by Flow-set Search and Flow-
set Creation modules. Flow-set Search module routes a packet
by searching the flow-set that has the same hash value with the
packet. If a packet does not belong to any exiting flow-sets,
Flow-set Creation module will create a new flow-set associated
with the packet’s hash value and select a route for the flow-set.

Algorithm 1 shows the pseudo code of Flow-set Search. In
line 2, flow f ’s ingress edge switch is uses Hash function to
compute flow f ’s hash value hf . The computation includes

Algorithm 2 FlowsetCreation(Tis, Ris, hf)
Input:
Tis: flow-set routing table on edge switch is;
Ris: the set of active routes connected to edge switch is;
hf : packet pf ’s hash value.
Output:
tsfs: the turning-point switch address of flow-set fs that
contains flow f .

1: tsfs ← LeastLoadRoute(Ris);
2: FLCfs ← 0;
3: map hf to (tsfs, FLCfs);
4: Tis ← Tis

⋃
(tsfs, FLCfs);

5: ShouldChangeRoutefs ← FALSE;
6: Return tsfs;

two steps: (1) using CRC32 checksum algorithm to hash flow
f ’s packet pf ’s five tuples (i.e., source IP address, destination
IP address, source port number, destination port number, and
protocol field), (2) doing the mod operation on the result of
the first step with |Tis|, the number of entries in switch is’s
flow-set routing table Tis4. A flow-set routing table Tis stores
the route and load counter FLC of each flow-set that traverses
switch is. The route of a flow-set is stored in the form of its
turning-point switch address. An FLC records the number of
packets that hit a flow-set entry in a period of time, and is
used by Lazy Rerouting and Adaptive Rerouting modules to
achieve load balancing. When the s idle timeout of an entry
in the flow-set routing table expires, it will be removed.

In line 3, switch is uses hash value hf to search flow f ’s
flow-set fs’s entry (tsfs,FLCfs) in its flow-set routing table
Tis. Lines 4 to 6 handles the case that flow f is a new flow
that does not belong to any existing flow-sets. If flow-set fs’s
route does not exist, switch is will request the scheduler. The
scheduler calls Flow-set Creation module to create a new flow-
set fs for flow f and assigns a turning-point switch for flow-
set fs based on the current network status, as addressed by
Algorithm 2.

Lines 7 to 9 concern the case that the minimum-power
subnet has changed and flow-set fs’s route should be
updated. IsSubnetChanged is a boolean variable with
default value FALSE, indicating an unchanged subnet.
When the subnet changes, the scheduler sends the message
IsSubnetChanged = TRUE to each switch. Upon re-
ceiving the message, edge switches change boolean variable
ShouldChangeRoute of each flow-set to TRUE, which
states a flow-set’s route should be updated. If boolean vari-
ables IsSubnetChanged and ShouldChangeRoutefs equal
TRUE, switch is calls Lazy Rerouting module to update flow-
set fs’s turning-point switch tsfs based on the current network
status, as addressed by Algorithm 3.

Algorithm 2 describes the pseudo code of Flow-set Creation
module. In line 1, the turning-point switch on the least loaded

4In this paper, we use entry and flow-set in the flow-set routing table
interchangeably.

Algorithm 3 LazyRerouting(Tis, Ris, tsfs)
Input:
Tis: flow-set routing table on edge switch is;
Ris: the set of active routes connected to edge switch is;
tsfs: the turning-point switch address of flow-set fs that
contains flow f ;
Output:
tsnewfs : the address of the new turning-point switch of flow-set
fs.

1: if (ShouldChangeRoutefs == TRUE and
route : is→ tsfs /∈ Ris) then

2: tsnewfs ← LeastLoadRoute(Ris);
3: loadis→tsnew

fs
← loadis→tsnew

fs
+ FLCfs;

4: ShouldChangeRoutefs ← FALSE;
5: end if
6: if (ShouldChangeRoutefs == TRUE and

loade→tsfs→esf < loadave and
ReroutingDecision(route : e → tsfs) == TRUE)

then
7: tsnewfs ← LeastLoadRoute(Ris);
8: loadis→tsnew

fs
← loadis→tsnew

fs
+ FLCfs;

9: loadis→tsfs
← loadis→tsfs

− FLCfs;
10: ShouldChangeRoutefs ← FALSE;
11: end if
12: if tsnewfs 6= ∅ then
13: tsfs ← tsnewfs ;
14: end if
15: Return tsfs.

route in Ris (the set of active routes connected to ingress edge
switch is) is selected as flow-set fs’s the turning-point switch.
In line 2, flow-set fs’s load counter FLCfs is initialized to
0. In lines 3 and 4, hash value hf is mapped to flow-set fs’s
entry (tsfs, FLCfs), and this mapping is stored in flow-set
routing table Tis. In line 5, ShouldChangeRoutefs changes
to FALSE, indicating that flow-set fs’s route is updated. In
line 6, the turning-point switch of flow-set fs is returned to
Flow-set Search module.

D. Lazy Rerouting

Algorithm 3 describes the pseudo code of Lazy Rerouting
module. Lines 1 to 5 are concerned with the case that flow-
set fs’s old route is closed. When the minimum-power subnet
changes to save power, flow-set fs’s old route is → tsfs
does not exist in route-set Ris (the set of active routes that
connect to ingress edge switch is). Thus, in route-set Ris,
the turning-point switch on the least loaded route in Ris is
selected as flow-set fs’s new turning-point switch. FLCfs,
the traffic load of flow-set fs, is added to the traffic load of
its new route is → tsnewfs . In line 4, after the route update,
ShouldChangeRoutefs changes to FALSE to state flow-set
fs’s route has been updated.

Lines 6 to 11 handle the case that one or more new
routes are available for flow-set fs. When the minimum-
power subnet changes to accommodate the increasing traffic

demand, the turning-point switch of flow-set fs will be
updated if it meets three requirements listed below: (1) flow-
set fs’s route has not been updated; (2) loadis→tsfs

, the
traffic load of route is → tsfs, does not reach the balanc-
ing counter threshold loadave; (3) flow-set fs satisfies the
rerouting probability:ReroutingDecision(route : is → tsfs)
== TRUE. Requirement (1) ensures that each flow-set
is judged only once whether to be rerouted or not. This
requirement prevents redundant rerouting judgments for the
same flow-set. Requirement (2) ensures each active route
with approximately equal traffic load. The balancing counter
threshold loadave is the average traffic load of all active routes,
and calculated by the sum of traffic loads of all active routes
divided by the number of all active routes.

Requirement (3) prevents traffic starvation on existing-
activated routes during the flow-set rerouting. If we only
consider the first two requirements to reroute flow-sets, flow-
sets are kept rerouting to the newly activated route(s) until
the traffic loads of those newly activated routes reach the
balancing counter threshold loadaveis . Under such a situation,
a few existing-activated routes could have no traffic for a
transient time and experience traffic starvation. In order to
prevent the undesired situation, RerouteDecision function sets
the probabilities for rerouting flow-sets from their original
existing-activated routes to newly activated routes. A flow-
set is rerouted only when it is selected by RerouteDecision
function.

If flow-set fs meets all the three requirements,
tsnewfs , FLCfs, loadis→tsnew

fs
, loadis→tsfs

and
ShouldChangeRoutefs are updated similar to lines 2
to 4. In lines 12 to 14, if a new turning-point switch tsnewfs

is selected for flow-set fs, tsfs is updated to tsnewfs . In line
16, the turning-point switch of flow-set fs is sent back to
Flow-set Routing module.

E. Adaptive Rerouting

Adaptive Rerouting module monitors the traffic load of
active routes and adaptively reroute some flow-sets to maintain
load balancing. The traffic load of active route r, denoted
load r, is periodically calculated and equals the total traffic
load of flow-sets on route r. The traffic load of a flow-
set is represented by the flow-set’s load counter FLC. The
AggreFlow scheduler can use OpenFlow meters to periodically
pull FLCs from edge switches [15]. Rerouting operations
will be conducted on active route r if the absolute difference
between load r and loadave is larger than load thd, where
loadave denotes the average traffic load of active routes,
and load thd is a preset threshold. If load r > loadave +
load thd, a few flow-sets on route r are rerouted to other
active routes with less loads so that load r will approach to
loadave; if load r < loadave − load thd, several flow-sets
are rerouted from active routes with higher loads to route r
until load r close to loadave.

V. SIMULATION

In this section, we evaluate the performance of AggreFlow
in the fat-tree network simulation platform.

A. Comparison Schemes

We compare AggreFlow with two flow-level scheduling
schemes.

Balance-oblivious flow-level scheduling [1]: The controller
consolidates every flow to the leftmost route with sufficient
capacity for the flow. For a single flow, a routing operation or
a rerouting operation requires multiple control messages from
the controller.

Balance-aware flow-level scheduling [4]: In a given
minimum-power subnet, the controller routes each new flow
to the least loaded route. As the subnet changes, the controller
reroutes existing flows to the least loaded route one by one.
The scheme’s details are explained in Section II-C.

AggreFlow: AggreFlow employs Flow-set Routing, Lazy
Rerouting and Adaptive Rerouting to efficiently schedule
flows. The details are described in Section III-B. We let
T(K) denote a flow-set routing table with K entries, and
AggreFlow(K) denote AggreFlow scheme using T(K).

B. Simulation setup

We designed a packet-mode simulation platform on a NS-3
based fat-tree testbed. In the DCN, each link has the same
rate, and each server sends a certain number of flows to all
other servers. To emulate flow arrivals and terminations, each
flow is given two states: ON and OFF. The ON status of a
flow lasts a duration with an exponentially distributed random
variable, which is determined when the flow is generated. The
OFF status of a flow is the idle time of the flow and also lasts
a duration of an exponentially distributed random variable,
decided when the previous ON status finishes. The power of
the DCN is the total power consumed by active switches and
links/ports.

Generally speaking, DCNs usually incorporate some level
of capacity safety margin to prepare for traffic surges [1].
In such cases, the network could allocate more capacity than
essential for normal workload. To implement capacity safety
margin φ, we monitor the utilization of each outgoing port/link
of a switch. A new port on the same side of the switch
will be enabled when the utilization exceeds 1-φ. Then, the
corresponding port in another switch will be activated to
establish the new link.

In our simulation, we use 3-layer 32-pod fat-tree network.
Each link’s rate is 1 Gbps, and the size of each packet is
1.5 KB. Each output port of a switch has a buffer space of
1,200 KB. The average ratio of ON period to OFF period
is 5 [3]. Each flow is an inter-pod flow. The power status
change of core switches causes flow rerouting. Traffic flows
are generated in two separate slot intervals. In the first interval
(0,60), each flow’s arrival slot is a random variable in slot
interval (0,40), and its termination slot is a random variable in
slot interval (40,60). In the second slot interval (60,124), each
flow’s arrival slot is a random variable in interval (60,100),

20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
e
tw

o
rk

 u
ti
liz

a
ti
o
n

Time (slot)

Fig. 5. Data center network utilization.

and its termination slot is a random variable in slot interval
(100,124). No new flows are generated in slot intervals (40,60)
and (100,124). Figure 5 shows the DCN utilization in our
simulation. In slot intervals (0,40) and (60,100), the DCN
utilization grows as the number of new flows increases. In slot
intervals (40,60) and (100,124), the DCN utilization decreases
as the existing flows terminate transmission. We take the power
parameters of a switch from [1]. The capacity safety margin
φ is set at 0.2.

C. Simulation Results
In our simulation, we evaluate three aspects for each

scheme: load-balancing performance, power consumption and
QoS performance.

1) Load-balancing Performance: The load-balancing per-
formance is evaluated in the form of Root Mean Squared Error
(RMSE) of active routes in the DCN [10].

RMSE =

√∑N
i=1(loadl − loadave)2

N
(1)

where i denotes the i-th link in the network, the network
consists of N links, loadi denotes the i-th link’s load, loadave
denotes the average link load of N links in the network.

Figure 6(a) shows load-balancing performance of different
flow scheduling schemes. A smaller RMSE, a better perfor-
mance. If all active routes have the same load, RMSE is 0. In
the figure, the box represents the center half of the data, and
the red line represents the median data. The whiskers include
1-25-50-75-95-th percentiles of the data, and red crosses are
5% outliers.

Balance-oblivious flow-level performs worst since it greed-
ily consolidates flows to the left routes in each switch layer.
The unbalanced traffic allocation on active routes could de-
grade power consumption since extra switches and links may
be activated to cater to bursty traffic surges on congested
routes. Balance-aware flow-level represents the best perfor-
mance because it conducts fine-grained flow-level routing and
rerouting based on its global visibility.

AggreFlow achieves the mean RMSE comparable to
Balance-aware flow-level. AggreFlow’s load-balancing perfor-
mance can be further improved by using large flow-set rout-
ing tables. AggreFlow(160)’s load balancing performance is

a b c d

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
a: Balance−oblivious flow−level

b: Balance−aware flow−level

c: AggreFlow(160)

d: AggreFlow(40)

R
o
u
te

 R
M

S
E

(a) Load-balancing performance of different flow
scheduling schemes.

4 8 16 32 64 128 256
0

20

40

60

80

100

Number of ports in a switch

P
e

rc
e

n
ta

g
e

 o
f

th
e

 o
ri
g

ia
n

l
fa

t−
tr

e
e

 p
o

w
e

r
(%

)

Balance−oblivious flow−level

Balance−aware flow−level

AggreFlow(160)

AggreFlow(40)

(b) Power saving of the DCN using switches with
different ports.

0 20 40 60 80 100 120

10
1

10
2

10
3

10
4

Time (slot)

N
u

m
b

e
r

o
f

c
o

n
tr

o
l
m

e
s
s
a

g
e

s

Balance−aware flow−level

AggreFlow(160)

AggreFlow(40)

(c) Flow routing overhead of different flow
scheduling schemes.

0 20 40 60 80 100 120

10
1

10
2

10
3

10
4

10
5

Time (slot)

N
u

m
b

e
r

o
f

c
o

n
tr

o
l
m

e
s
s
a

g
e

s

Balance−aware flow−level

AggreFlow(160)

AggreFlow(40)

(d) Flow rerouting overhead of different flow
scheduling schemes.

26 26.001 26.002 26.003 26.004 26.005 26.006

10
1

10
2

10
3

10
4

Time (0.0001 slot)

N
u

m
b

e
r

o
f

c
o

n
tr

o
l
m

e
s
s
a

g
e

s

Balance−aware flow−level

AggreFlow(40)

(e) Flow rerouting overhead in interval (26,26.006).

0 20 40 60 80 100 120

10
1

10
2

10
3

10
4

10
5

Time (slot)

N
u

m
b

e
r

o
f

c
o

n
tr

o
l
m

e
s
s
a

g
e

s

AggreFlow(40)

AggreFlow(160)

Balance−aware flow−level

(f) Cumulative scheduling overhead of different
flow scheduling schemes.

Fig. 6. Simulation results of different flow scheduling schemes. Balance-aware flow-level achieves the optimal power saving with varying traffic flows. In
Figures 6(c)-6(f), we do not present the results of Balance-oblivious flow-level since it has the same result of Balance-aware flow-level.

more close to Balance-aware flow-level than AggreFlow(40).
However, the better performance is at cost of higher control
messages for rerouting more flow-sets.

2) Power Consumption: In our simulation, every 1 slot, the
scheduler collects traffic statistics from switches and decides
power status of switches and links. Each scheme selects active
switches and links in a deterministic left-to-right order, so that
unused switches and links are then turned off in a deterministic
right-to-left order to save power. With such an active switch
selection order, a specific number of active switches and links
is coupled with only one minimum-power subnet.

For the metric of power consumption, we can divide flow
scheduling schemes into two categories: the balance-oblivious
scheme (i.e, Balance-oblivious flow-level) and the balance-
aware scheme (i.e, all schemes except Balance-oblivious flow-
level). For the entire simulation, both flow-level balance-aware
schemes and Aggreflow consume the same power. Figure
6(b) shows the power efficiency of the schemes with the
original fat-tree network using different switches. In the figure,
the power saving increases as the number of switches’ ports
increase, and reaches the threshold 67% for the balance-aware
schemes and 85% for the balance-oblivious scheme. Good
load-balancing performance reduces power consumption by
about 18% on average, while the unbalanced load allocation
degrades power efficiency as the DCN’s scale expands.

3) QoS Performance: We use four metrics to evaluate the
QoS performace for each scheme: packet loss rate, routing

overhead, rerouting overhead and cumulative scheduling over-
head.

(1) Packet Loss Rate. Packet loss comes from the procedure
of the minimum-power subnet reconfiguration. As traffic load
increases, links have to accommodate more flows and become
congested. When the load on the most congested link exceeds a
pre-determined threshold (1-φ), a new minimum-power subnet
is generated to relieve the current network congestion.

In our simulation, packet loss mainly comes from slots
15 and 75. As shown in Figure 5, traffic load increases
equally at each slot interval. However, at the two slots, the
subnet is small and thus performs worse than a large subnet
to prevent packet loss when traffic surges occur. For the
same subnet, the load-balancing performance impacts packet
loss rate. Compared with the imbalanced load allocation, a
balanced traffic allocation not only postpones the time that
links reach the pre-determined thresholds, but also reduces the
number of packets lost on the most congested links. Packet
loss rate of Balance-aware flow-level, AggreFlow(40) and
AggreFlow(160) are 0.19%, 0.193% and 0.193%, respectively.
Although these AggreFlow schemes do not achieve the same
load-balancing performance as Balance-aware flow-level does,
their load-balancing performance is good enough to handle
traffic surges on congested links.

(2) Flow Routing Overhead. We define the flow routing
overhead as the number of control messages used for routing
new flows at a single slot. Figure 6(c) shows flow routing

overhead of Balance-aware flow-level, AggreFlow(40) and
AggreFlow(160). In the figure, Balance-aware flow-level con-
sumes the highest overhead. In the two intervals (0,40) and
(60,100), Balance-aware flow-level’s overhead maintains about
1,500 control messages per slot since new flows arrive at the
network in an approximate similar rate. In slot intervals (40,60)
and (100,120), no new flows enter the network, and Balance-
aware flow-level does not route any new flow.

AggreFlow(40)’s routing overhead is about 99% less than
Balance-aware flow-level and only comes from the intervals
(0,5) and (61,68). In intervals (0,5) and (61,68), AggreFlow
creates new flow-sets as new flows enter the DCN. Specifically,
in slot interval (0,5), the flow-set routing tables on different
edge switches are initialized when the first flow of each flow-
set enters the network. AggreFlow(40)’s the highest overhead
comes from slot 1, the first slot to initialize flow-set routing
tables, but it is still about 87.4% less than Balance-aware
flow-level. As the number of initialized flow-sets increases,
AggreFlow(40)’s overhead decreases. At the end of slot 5,
the initialization completes. After the initialization, each flow-
set is assigned with a route. Thus, in the slot interval (6,40),
when an edge switch receives new flows, it finds a new
flow’s route from its flow-set routing table. In interval (40,60),
no new flows enter the network, and some existing flows
terminate transmission. As a result, a few flow-set entries
are disabled from flow-set routing tables when their timeouts
expire. Similarly, in slot interval (61,68), new flows enter
the network and the DCN utilization increases. Under such a
condition, some flow-set entries are initialized again in flow-
set routing tables. AggreFlow(160)’s overhead is a little higher
than that of AggreFlow(40) and comes from two longer slot
intervals (0,18) and (61,83). AggreFlow(160) uses larger flow-
set tables so that it requires more control messages and longer
time to initialize its tables than AggreFlow(40) does.

(3) Flow Rerouting Overhead. The number of control mes-
sages used for rerouting existing flows at slot t is named flow
rerouting overhead at slot t. Figure 6(d) shows flow rerouting
overhead of Balance-aware flow-level, AggreFlow(40) and Ag-
greFlow(160). In the figure, the overheads of all schemes vary
as the DCN utilization changes shown in Figure 5. Balance-
aware flow-level performs worst and consumes 36,067 mes-
sages at slot 96. This is because when each subnet changes, it
reroutes a large number of flows, and each rerouting operation
requires multiple control messages.

AggreFlow(40) reduces the overhead by about 99% com-
pared with Balance-aware flow-level. Since the controller can
reroute a set of flows by sending one control message to
an edge switch, AggreFlow(40) requires much less control
messages to reroute the same number of flows than Balance-
ware flow-level does.

AggreFlow conducts rerouting operations in a relative long
time. There are two reasons. First, using Lazy Rerouting, an
AggreFlow agent reroutes a flow-set when it receives a packet
belonging to the flow-set. Figure 6(e) shows the overhead
consumed by rerouting operations in the interval (26,26.006).
At slot 26, the minimum-power subnet changes, and Balance-

aware low-level reroute flows immediately, whereas Aggre-
Flow(40) spreads its rerouting operation over two separate
slot intervals (26,26.0001) and (26.0011,26.0028). Second,
using Adaptive Rerouting, AggreFlow dynamically reroutes
some flow-sets to maintain load balancing when the scheduler
detects imbalanced traffic loads on active routes.

In Figure 6(d), AggreFlow(160)’s overhead is larger than
that of AggreFlow(40). AggreFlow(160) uses large flow-set
routing tables and requires more control messages in each
rerouting operation than AggreFlow(40) does.

(4) Cumulative Scheduling Overhead. Figure 6(f) shows
cumulative overhead of different flow scheduling schemes.
Compared with Balance-aware flow-level, AggreFlow(40) and
AggreFlow(160) reduce cumulative overhead by about 99%
and 98% on average, respectively.

VI. DISCUSSION

In this section, we discuss some issues related to AggreFlow.

A. Prevent out-of-order Packets

In practice, we apply some actions to ensure a flow’s
packets arrive in-order after each rerouting operation. When
one or more routes are about to be deactivated, flows will
be forwarded via their new routes unless no packet of those
flows is left on the soon-to-be-closed routes. When one or
more new routes are activated, flows are not forwarded on
their new routes until the left packets of the flows transmit
termination on their original routes.

B. Header Encapsulation

Similarly to VL2 [8], AggreFlow can use an IP-in-IP
encapsulation to insert the switch addresses. For a small DCN,
we can give each switch a specific number to represent its
address and reuse VLAN field to insert switch address [16].
Besides existing encapsulation techniques, we can also use
state-of-the-art techniques (e.g., POF [17], PIF [18]) to design
flexible packet headers.

C. AggreFlow Application Scenario

In DCNs, some network applications may pay attention to
specific information contained in each packet of every flow.
For example, in the applicaiton of network firewall, the packet
is forwarded or dropped based on the rules that match the
packet’s source IP address, destination IP address and port
numbers. AggreFlow can also be applied to such applications
with small modification. For instance, we can conduct access
control for each flow on edge switches (e.g., context-aware
detection on packets of flows) before the flows are aggregated
into flow-sets. We leave this issue for our future work.

VII. RELATED WORK

A. Data Center Cost Saving

In recent years, many studies have been conducted to opti-
mize data center cost. Some researches introduce to save the
power consumption of a data center by dynamically adjusting
the efficiency of devices (e.g., servers [19], cooling system

[20][21]). Some other works propose to reduce the electricity
cost of distributed data centers considering practical factors,
such as time-of-use electricity rates [22][23][24][25][26][27],
renewable energy availability [28][29][30].

Some recent studies consider the power consumption of
network devices. ElasticTree [1] turns on and off switches
and links based on the current traffic demand and consolidates
traffic on a minimum-power subnet. CARPO [2] consolidates
low-correlation flows together to further save power based on
a observation that bandwidth demands of low-correlation flows
usually do not peak at the same time in real DCNs. Widjaja et
al. [3] explore the impacts of stage and switch size on power
saving of a DCN. In [31], the authors further reduce power
by considering the correlation between the DCN and servers.

Different from existing works that focus on saving power
through adjusting power states of switches and links in DCNs,
our work considers the impact of load balancing on power
efficiency and solves the scalability problem to deploy a
power-efficient DCN with time-varying traffic loads.

B. Flow Scheduling in DCNs

In Hedera [7], new flows are recognized as mice flows and
routed by edge switches with oblivious static schemes. When
a flow’s transmission rate grows past a threshold rate, it is
detected as an elephant flow and rerouted to a new route
with less load. In DevoFlow [32], flows are classified into
mice and elephant flows based on their transferred volumes.
Mice flow routing are achieved by matching the exact-match
flow entries, whereas DevoFlow controller reroutes elephant
flows to the least congested path between the flows’ end-hosts.
Mahout [33] also focuses scheduling elephant flows, which are
detected at end-hosts by looking at the TCP buffer of outgoing
flows. The above schemes are designed for static DCNs, where
all switches and links are always turned on. As the minimum-
power subnet changes frequently, they may lead to imbalanced
load on active routes or frequent control message storms.

VIII. CONCLUSION

In this paper, we identify two practical issues for deploying
power-efficient DCNs: unbalanced traffic allocation of active
routes could affect power efficiency; frequent control message
storms would overwhelm OpenFlow switches. To achieve
power saving and load balancing with low overhead, we
propose a dynamic flow scheduling scheme named Aggre-
Flow. AggreFlow schedules flows in a coarse-grained flow-set
fashion, employs lazy rerouting to amortize the huge number
of simultaneous rerouting operations over a relatively long
period of time, and adaptively reroutes flow-sets to maintain
load balancing on active routes. Simulation results show that
AggreFlow achieves high power efficiency and good load-
balancing performance with low overhead.

REFERENCES

[1] B. Heller and et al., “Elastictree: saving energy in data center networks,”
in USENIX NSDI’10.

[2] X. Wang and et al., “Carpo: Correlation-aware power optimization in
data center networks,” in IEEE INFOCOM’12.

[3] I. Widjaja and et al., “Small versus large: switch sizing in topology
design of energy-efficient data centers,” in IEEE/ACM IWQoS’13.

[4] N. McKeown and et al., “Openflow: Enabling innovation in campus
networks,” 2008.

[5] K. He and et al., “Measuring control plane latency in sdn-enabled
switches,” in ACM SOSR’15.

[6] A. Wang and et al., “Scotch: Elastically scaling up sdn control-plane
using vswitch based overlay,” in ACM CoNext’14.

[7] M. Al-Fares and et al., “Hedera: Dynamic flow scheduling for data center
networks.” in USENIX NSDI’10.

[8] A. Greenberg and et al., “Vl2: a scalable and flexible data center
network,” in ACM Computer Communication Review, vol. 39, no. 4,
2009, pp. 51–62.

[9] T. Benson and et al., “Understanding data center traffic characteristics,”
ACM Computer Communication Review, vol. 40, no. 1, pp. 92–99, 2010.

[10] Z. Guo and et al., “Improving the performance of load balancing in
software-defined networks through load variance-based synchroniza-
tion,” Elsevier Computer Networks, vol. 68, pp. 95–109, 2014.

[11] Extremetech, http://www.extremetech.com/extreme/161772-microsoft-
now-has-one-million-servers-less-than-google-but-more-than-amazon-
says-ballmer, 2013.

[12] T. Benson and et al., “Network traffic characteristics of data centers in
the wild,” in ACM IMC’10.

[13] B. Yan and et al, “Cab: A reactive wildcard rule caching system for
software-defined networks,” in ACM HotSDN’14.

[14] A. Vishnoi and et al., “Effective switch memory management in open-
flow networks,” in ACM DEBS’14.

[15] OpenNetworkingFoundation, “Openflow switch specification v1.3.1,”
2012.

[16] A. S. Iyer and et al., “Switchreduce: Reducing switch state and controller
involvement in openflow networks,” in IFIP Networking’13.

[17] H. Song, “Protocol-oblivious forwarding: Unleash the power of sdn
through a future-proof forwarding plane,” in ACM HotSDN’13.

[18] P. Bosshart and et al., “P4: Programming protocol-independent packet
processors,” ACM Computer Communication Review, vol. 44, no. 3, pp.
87–95, 2014.

[19] J. Heo and et al., “Integrating adaptive components: An emerging
challenge in performance-adaptive systems and a server farm case-
study,” in IEEE RTSS’07.

[20] L. Barroso and et al., “The case for energy-proportional computing,”
IEEE Computer, vol. 40, no. 12, pp. 33–37, 2007.

[21] C. Bash and et al., “Cool job allocation: measuring the power savings of
placing jobs at cooling-efficient locations in the data center,” in USENIX
ATC’07.

[22] A. Qureshi and et al., “Cutting the electric bill for internet-scale
systems,” ACM SIGCOMM’09.

[23] L. Rao and et al., “Minimizing electricity cost: Optimization of dis-
tributed internet data centers in a multi-electricity-market environment,”
in IEEE INFOCOM’10.

[24] Z. Guo and et al., “Cutting the electricity cost of distributed datacenters
through smart workload dispatching,” IEEE Communications Letters,
vol. 17, no. 12, pp. 2384–2387, 2013.

[25] Y. Zhang and et al., “Electricity bill capping for cloud-scale data centers
that impact the power markets,” in IEEE ICPP’12.

[26] J. Li and et al, “Towards optimal electric demand management for
internet data centers,” IEEE Transactions on Smart Grid, vol. 3, no. 1,
pp. 183–192, 2012.

[27] Z. Guo and et al., “Jet: Electricity cost-aware dynamic workload man-
agement in geographically distributed datacenters,” Elsevier Computer
Communications, vol. 50, pp. 162–174, 2014.

[28] Y. Zhang and et al., “Greenware: greening cloud-scale data centers to
maximize the use of renewable energy,” in Springer Middleware’11.

[29] ——, “Testore: Exploiting thermal and energy storage to cut the elec-
tricity bill for datacenter cooling,” in IEEE CNSM’12.

[30] Z. Liu and et al., “Greening geographical load balancing,” in ACM
SIGMETRICS’11.

[31] K. Zheng and et al., “Joint power optimization of data center network
and servers with correlation analysis,” in INFOCOM’14.

[32] A. R. Curtis and et al., “Devoflow: Scaling flow management for high-
performance networks,” in ACM Computer Communication Review,
vol. 41, no. 4, 2011, pp. 254–265.

[33] ——, “Mahout: Low-overhead datacenter traffic management using end-
host-based elephant detection,” in IEEE INFOCOM’11.

